Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Diagn Ther ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837024

RESUMEN

PURPOSE: Globally, non-small cell lung cancer (NSCLC) is the primary cause of cancer-related mortality, both early and accurate diagnosis are essential for effective treatment and improved patient outcomes. Exosomal noncoding RNAs (ncRNAs) have emerged as promising biomarkers for NSCLC diagnosis. This meta-analysis aims to assess the diagnostic accuracy of exosomal long noncoding RNAs (lncRNAs) for diagnosing NSCLC. METHODS: A comprehensive literature search was conducted to identify relevant studies that assessed the diagnostic performance of exosomal lncRNAs in NSCLC. Quality assessment and data extraction were performed independently by two reviewers. Pooled sensitivity, specificity, and other relevant diagnostic parameters were calculated using a bivariate random-effects model. Subgroup analyses and meta-regression were conducted to explore potential sources of heterogeneity. RESULTS: Sixteen studies, comprising 1843 NSCLC cases and 1298 controls, were included in this meta-analysis. The pooled sensitivity and specificity of nine exosomal lncRNAs for diagnosing NSCLC were 0.74 [95% confidence interval (CI) 0.69-0.79] and 0.78 (95% CI 0.68-0.85). The pooled area under the receiver operating characteristic curve (AUC) for fifteen lncRNAs was 0.80 (95% CI 0.768-0.831). Meta-regression could not find any source for interstudy heterogeneity. CONCLUSION: Exosomal lncRNAs, particularly AL139294.1, GAS5, LUCAT1, and SOX2-OT, have excellent diagnostic accuracy and promising diagnostic potential in NSCLC. Therefore, they can be used as diagnostic tools for early detection of NSCLC.

2.
Angew Chem Int Ed Engl ; 63(23): e202403245, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578838

RESUMEN

The encapsulation of functional colloidal nanoparticles (100 nm) into single-crystalline ZSM-5 zeolites, aiming to create uniform core-shell structures, is a highly sought-after yet formidable objective due to significant lattice mismatch and distinct crystallization properties. In this study, we demonstrate the fabrication of a core-shell structured single-crystal zeolite encompassing an Fe3O4 colloidal core via a novel confinement stepwise crystallization methodology. By engineering a confined nanocavity, anchoring nucleation sites, and executing stepwise crystallization, we have successfully encapsulated colloidal nanoparticles (CN) within single-crystal zeolites. These grafted sites, alongside the controlled crystallization process, compel the zeolite seed to nucleate and expand along the Fe3O4 colloidal nanoparticle surface, within a meticulously defined volume (1.5×107≤V≤1.3×108 nm3). Our strategy exhibits versatility and adaptability to an array of zeolites, including but not restricted to ZSM-5, NaA, ZSM-11, and TS-1 with polycrystalline zeolite shell. We highlight the uniformly structured magnetic-nucleus single-crystalline zeolite, which displays pronounced superparamagnetism (14 emu/g) and robust acidity (~0.83 mmol/g). This innovative material has been effectively utilized in a magnetically stabilized bed (MSB) reactor for the dehydration of ethanol, delivering an exceptional conversion rate (98 %), supreme ethylene selectivity (98 %), and superior catalytic endurance (in excess of 100 hours).

3.
Small Methods ; : e2400069, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593363

RESUMEN

Silicon (Si) is regarded as a promising anode material because of its outstanding theoretical capacity, abundant existence, and mature infrastructure, but it suffers from an inherent volume expansion problem. Herein, a facile, scalable, and cost-effective route to produce Si nanosheets (Si NSs) using a low-cost silica fume as the start materials is proposed. After coated with carbon, the as-prepared Si-NSs@C material delivers ultrahigh capability (2770 mAh g-1 at 0.1 C), high initial Coulombic efficiency (87.9%), and long cycling lifespan (100 cycles at 0.5 C with a capacity decay rate of 0.3% per cycle). Beyond proof of concept, this work demonstrates a Si-NSs based pouch cell with an impressive capacity retention of 70.9% after 400 cycles, making it more promising for practical application. Revealed by the theoretical simulation, kinetics analysis, and in situ thickness/pressure detection, it is found that the superior performance of Si-NSs is attributed to the improved diffusivity and reversibility of Li+ ions and low expansion.

4.
Natl Sci Rev ; 11(4): nwae054, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545447

RESUMEN

Due to their uncontrollable assembly and crystallization process, the synthesis of mesoporous metal oxide single crystals remains a formidable challenge. Herein, we report the synthesis of single-crystal-like mesoporous Li2TiSiO5 by using soft micelles as templates. The key lies in the atomic-scale self-assembly and step-crystallization processes, which ensure the formation of single-crystal-like mesoporous Li2TiSiO5 microparticles via an oriented attachment growth mechanism under the confinement of an in-situ formed carbon matrix. The mesoporous Li2TiSiO5 anode achieves a superior rate capability (148 mAh g-1 at 5.0 A g-1) and outstanding long-term cycling stability (138 mAh g-1 after 3000 cycles at 2.0 A g-1) for lithium storage as a result of the ultrafast Li+ diffusion caused by penetrating mesochannels and nanosized crystal frameworks (5-10 nm). In comparison, bulk Li2TiSiO5 exhibits poor rate capability and cycle performance due to micron-scale diffusion lengths. This method is very simple and reproducible, heralding a new way of designing and synthesizing mesoporous single crystals with controllable frameworks and chemical functionalities.

5.
Environ Sci Pollut Res Int ; 30(59): 123335-123350, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981607

RESUMEN

In recent years, green bonds have become an important part of the green financial system. In this paper, we investigate theoretically and empirically how green bond financing impacts corporate long-term value orientation. To study this relationship, we manually collect green bond financing data and use Python to construct a measure reflecting corporate long-term value. Using a sample of Chinese A-share bond issuing companies from 2016 to 2021, we find that (1) green bond financing can significantly promote companies to pursue long-term value, in which financing costs, management's strategic risk-taking, and external supervision are the underlying mechanisms. (2) There is a synergistic effect between green bond financing and environmental regulation, which can jointly improve the intensity of corporate long-term value orientation. (3) The relationship between green bond financing and corporate long-term value is more significant in enterprises with heavily polluting, lower risk-taking levels, less strategic change, and lower financial mismatch risk. Our findings reveal the "corrective" effect of green bond financing on management's strategic decision-making, which provides new empirical evidence for comprehensively and accurately evaluating the role of green bonds and promoting the development of the green bond market.


Asunto(s)
Contaminación Ambiental , Regulación Gubernamental , China , Valores Sociales , Comercio
6.
Nat Chem ; 15(6): 832-840, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37055572

RESUMEN

The ability of Janus nanoparticles to establish biological logic systems has been widely exploited, yet conventional non/uni-porous Janus nanoparticles are unable to fully mimic biological communications. Here we demonstrate an emulsion-oriented assembly approach for the fabrication of highly uniform Janus double-spherical MSN&mPDA (MSN, mesoporous silica nanoparticle; mPDA, mesoporous polydopamine) nanoparticles. The delicate Janus nanoparticle possesses a spherical MSN with a diameter of ~150 nm and an mPDA hemisphere with a diameter of ~120 nm. In addition, the mesopore size in the MSN compartment is tunable from ~3 to ~25 nm, while those in the mPDA compartments range from ~5 to ~50 nm. Due to the different chemical properties and mesopore sizes in the two compartments, we achieve selective loading of guests in different compartments, and successfully establish single-particle-level biological logic gates. The dual-mesoporous structure enables consecutive valve-opening and matter-releasing reactions within one single nanoparticle, facilitating the design of single-particle-level logic systems.


Asunto(s)
Nanopartículas , Emulsiones , Nanopartículas/química , Compuestos de Diazonio , Piridinas , Dióxido de Silicio/química , Porosidad
7.
Nat Commun ; 13(1): 6136, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253472

RESUMEN

Multi-chambered architectures have attracted much attention due to the ability to establish multifunctional partitions in different chambers, but manipulating the chamber numbers and coupling multi-functionality within the multi-chambered mesoporous nanoparticle remains a challenge. Herein, we propose a nanodroplet remodeling strategy for the synthesis of hierarchical multi-chambered mesoporous silica nanoparticles with tunable architectures. Typically, the dual-chambered nanoparticles with a high surface area of ~469 m2 g-1 present two interconnected cavities like a calabash. Furthermore, based on this nanodroplet remodeling strategy, multiple species (magnetic, catalytic, optic, etc.) can be separately anchored in different chamber without obvious mutual-crosstalk. We design a dual-chambered mesoporous nanoreactors with spatial isolation of Au and Pd active-sites for the cascade synthesis of 2-phenylindole from 1-nitro-2-(phenylethynyl)benzene. Due to the efficient mass transfer of reactants and intermediates in the dual-chambered structure, the selectivity of the target product reaches to ~76.5%, far exceeding that of single-chambered nanoreactors (~41.3%).

8.
J Am Chem Soc ; 144(45): 20964-20974, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36283036

RESUMEN

Precise synthesis of well-ordered ultrathin nanowire arrays with tunable active surface, though attractive in optoelectronics, remains challenging to date. Herein, well-aligned sub-10 nm TiO2 nanowire arrays with controllable corrugated structure have been synthesized by a unique monomicelle-directed assembly method. The nanowires with an exceptionally small diameter of ∼8 nm abreast grow with an identical adjacent distance of ∼10 nm, forming vertically aligned arrays (∼800 nm thickness) with a large surface area of ∼102 m2 g-1. The corrugated structure consists of bowl-like concave structures (∼5 nm diameter) that are closely arranged along the axis of the ultrathin nanowires. And the diameter of the concave structures can be finely manipulated from ∼2 to 5 nm by simply varying the reaction time. The arrays exhibit excellent charge dynamic properties, leading to a high applied bias photon-to-current efficiency up to 1.4% even at a very low potential of 0.41 VRHE and a superior photocurrent of 1.96 mA cm-2 at 1.23 VRHE. Notably, an underlying mechanism of the hole extraction effect for concave walls is first clarified, demonstrating the exact role of concave walls as the hole collection centers for efficient water splitting.

9.
Mar Drugs ; 20(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36286455

RESUMEN

Glycosaminoglycan from Apostichopus japonicus (AHG) and its depolymerized fragments (DAHGs) are anticoagulant fucosylated chondroitin sulfate. The aim of this study was to further evaluate the anticoagulant and antithrombic activity of AHG and DAHGs, as well as reveal the dynamic relationship between exposure and effect in vivo. The results demonstrated that AHG100 (Mw~100 kDa), DAHG50 (Mw~50 kDa), and DAHG10 (Mw~10 kDa) exhibited potent anticoagulant activity by inhibiting intrinsic factor Xase complex (FXase) as well as antithrombin-dependent factor IIa (FIIa) and factor Xa (FXa). These glycosaminoglycans markedly prevented thrombosis formation and thrombin-induced platelet aggregation in a dose- and molecular weight-dependent manner in vitro and in vivo. The further bleeding time measurement indicated that DAHG10 exhibited obviously lower hemorrhage risks than native AHG100. Following oral administration, DAHG10 could be absorbed into blood, further dose-dependently prolonging activated partial thromboplastin time (APTT) and thrombin time (TT) as well as inhibiting FXa and FIIa partially through FXase. Anticoagulant activity was positively associated with plasma concentration following oral administration of DAHG10. Our study proposed a new point of view to understand the correlation between effects and exposure of fucosylated chondroitin sulfate as an effective and safe oral antithrombotic agent.


Asunto(s)
Anticoagulantes , Stichopus , Ratas , Animales , Anticoagulantes/farmacología , Glicosaminoglicanos/farmacología , Factor Xa , Coagulación Sanguínea , Trombina , Fibrinolíticos/farmacología , Factor Intrinseco/farmacología , Antitrombinas/farmacología
10.
Angew Chem Int Ed Engl ; 61(43): e202211307, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36037030

RESUMEN

A sulfhydryl monomicelles interfacial assembly strategy is presented for the synthesis of fully exposed single-atom-layer Pt clusters on 2D mesoporous TiO2 (SAL-Pt@mTiO2 ) nanosheets. This synthesis features the introduction of the sulfhydryl group in monomicelles to finely realize the controllable co-assembly process of Pt precursors within ordered mesostructures. The resultant SAL-Pt@mTiO2 shows uniform SAL Pt clusters (≈1.2 nm) anchored in ultrathin 2D nanosheets (≈7 nm) with a high surface area (139 m2 g-1 ), a large pore size (≈25 nm) and a high dispersion (≈99 %). Moreover, this strategy is universal for the synthesis of other SAL metal clusters (Pd and Au) on 2D mTiO2 with high exposure and accessibility. When used as a catalyst for hydrogenation of 4-nitrostyrene, the SAL-Pt@mTiO2 shows a high catalytic activity (TOF up to 2424 h-1 ), 100 % selectivity for 4-aminostyrene, good stability, and anti-resistance to thiourea poisoning under relatively mild conditions (25 °C, 10 bar).

11.
J Am Chem Soc ; 144(26): 11767-11777, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35731994

RESUMEN

Constructing hierarchical three-dimensional (3D) mesostructures with unique pore structure, controllable morphology, highly accessible surface area, and appealing functionality remains a great challenge in materials science. Here, we report a monomicelle interface confined assembly approach to fabricate an unprecedented type of 3D mesoporous N-doped carbon superstructure for the first time. In this hierarchical structure, a large hollow locates in the center (∼300 nm in diameter), and an ultrathin monolayer of spherical mesopores (∼22 nm) uniformly distributes on the hollow shells. Meanwhile, a small hole (4.0-4.5 nm) is also created on the interior surface of each small spherical mesopore, enabling the superstructure to be totally interconnected. Vitally, such interconnected porous supraparticles exhibit ultrahigh accessible surface area (685 m2 g-1) and good underwater aerophilicity due to the abundant spherical mesopores. Additionally, the number (70-150) of spherical mesopores, particle size (22 and 42 nm), and shell thickness (4.0-26 nm) of the supraparticles can all be accurately manipulated. Besides this spherical morphology, other configurations involving 3D hollow nanovesicles and 2D nanosheets were also obtained. Finally, we manifest the mesoporous carbon superstructure as an advanced electrocatalytic material with a half-wave potential of 0.82 V (vs RHE), equivalent to the value of the commercial Pt/C electrode, and notable durability for oxygen reduction reaction (ORR).

12.
Adv Mater ; 34(28): e2202873, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35526099

RESUMEN

Sodium-ion batteries (SIBs) are a promising candidate for grid-scale energy storage, however, the sluggish ion-diffusion kinetics brought by the large radius of Na+ seriously limits the performance of SIBs, let alone at low temperatures. Herein, a confined acid-base pair self-assembly strategy to synthesize unusual Ti0.88 Nb0.88 O4- x @C for high-performance SIBs operating at room and low temperatures is proposed. The confinement self-assembly of the acid-base pair around the micelles and confined crystallization by the carbon layer realize the formation of ordered and stoichiometric mesoporous frameworks with opened ion channels. Thus, the mesoporous Ti0.88 Nb0.88 O4- x @C exhibits rapid Na+ diffusion kinetics at 25 and -40 °C, which are one order higher than that of the nonporous one. A high reversible capacity of 233 mAh g-1 , excellent rate (a specific capacity of 103 mAh g-1 at 50 C), and cycling performances (<0.03% fading per cycle) can be observed at 25 °C. More importantly, even at -40 °C, the mesoporous Ti0.88 Nb0.88 O4- x @C can still deliver the 161 mAh g-1 capacity, a high initial Coulombic efficiency of 60% and outstanding cycling stability (99 mAh g-1 at 0.5 C after 500 cycles). It is believed this strategy opens a new avenue for constructing novel mesoporous electrode materials for low-temperature energy storage.

13.
Angew Chem Int Ed Engl ; 61(27): e202203022, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35411660

RESUMEN

Mimicking natural nitrogenase to create highly efficient single-atom catalysts (SACs) for ambient N2 fixation is highly desired, but still challenging. Herein, S-coordinated Fe SACs on mesoporous TiO2 have been constructed by a lattice-confined strategy. The extended X-ray absorption fine structure and X-ray photoelectron spectroscopy spectra demonstrate that Fe atoms are anchored in TiO2 lattice via the FeS2 O2 coordination configuration. Theoretical calculations reveal that FeS2 O2 sites are the active centers for electrocatalytic nitrogen reduction reaction (NRR). Moreover, the finite element analysis shows that confinement of opened and ordered mesopores can facilitate the mass transport and offer an enlarged active surface area for NRR. As a result, this catalyst delivers a favorable NH3 yield rate of 18.3 µg h-1 mgcat. -1 with a high Faradaic efficiency of 17.3 % at -0.20 V versus a reversible hydrogen electrode. Most importantly, this lattice-confined strategy is universal and can also be applied to Ni1 Sx @TiO2 , Co1 Sx @TiO2 , Mo1 Sx @TiO2 , and Cu1 Sx @TiO2 SACs. Our study provides new hints for the design and biomimetic synthesis of highly efficient NRR electrocatalysts.

14.
J Am Chem Soc ; 144(13): 6091-6099, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35316600

RESUMEN

Synthesis of hierarchically porous structures with uniform spatial gradient and structure reinforcement effect still remains a great challenge. Herein, we report the synthesis of zeolite@mesoporous silica core-shell nanospheres (ZeoA@MesoS) with a gradient porous structure through a micellar dynamic assembly strategy. In this case, we find that the size of composite micelles can be dynamically changed with the increase of swelling agents, which in situ act as the building blocks for the modular assembly of gradient mesostructures. The ZeoA@MesoS nanospheres are highly dispersed in solvents with uniform micropores in the inner core and a gradient tubular mesopore shell. As a nanoreactor, such hierarchically gradient porous structures enable the capillary-directed fast mass transfer from the solutions to inner active sites. As a result, the ZeoA@MesoS catalysts deliver a fabulous catalytic yield of ∼75% on the esterification of long-chain carboxylic palmitic acids and high stability even toward water interference, which can be well trapped by the ZeoA core, pushing forward the chemical equilibrium. Moreover, a very remarkable catalytic conversion on the C-H arylation reaction of large N-methylindole is achieved (∼98%) by a Pd-immobilized ZeoA@MesoS catalyst. The water tolerance feature gives a notable enhancement of 26% in catalytic yield compared to the Pd-dendritic mesoporous silica without the zeolite core.


Asunto(s)
Nanosferas , Catálisis , Micelas , Nanosferas/química , Porosidad , Dióxido de Silicio/química
15.
J Am Chem Soc ; 144(5): 2208-2217, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35099956

RESUMEN

Iridium (Ir)-based electrocatalysts are widely explored as benchmarks for acidic oxygen evolution reactions (OERs). However, further enhancing their catalytic activity remains challenging due to the difficulty in identifying active species and unfavorable architectures. In this work, we synthesized ultrathin Ir-IrOx/C nanosheets with ordered interlayer space for enhanced OER by a nanoconfined self-assembly strategy, employing block copolymer formed stable end-merged lamellar micelles. The interlayer distance of the prepared Ir-IrOx/C nanosheets was well controlled at ∼20 nm and Ir-IrOx nanoparticles (∼2 nm) were uniformly distributed within the nanosheets. Importantly, the fabricated Ir-IrOx/C electrocatalysts display one of the lowest overpotential (η) of 198 mV at 10 mA cm-2geo during OER in an acid medium, benefiting from their features of mixed-valence states, rich electrophilic oxygen species (O(II-δ)-), and favorable mesostructured architectures. Both experimental and computational results reveal that the mixed valence and O(II-δ)- moieties of the 2D mesoporous Ir-IrOx/C catalysts with a shortened Ir-O(II-δ)- bond (1.91 Å) is the key active species for the enhancement of OER by balancing the adsorption free energy of oxygen-containing intermediates. This strategy thus opens an avenue for designing high performance 2D ordered mesoporous electrocatalysts through a nanoconfined self-assembly strategy for water oxidation and beyond.

16.
Small Methods ; 5(5): e2001137, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34928090

RESUMEN

An aqueous emulsion polymerization self-assembly approach is demonstrated for the first time to synthesize ultrahigh nitrogen containing mesoporous polymer nanospheres, using melamine-formaldehyde resin oligomers as precursors. In the synthesis, change from alkaline to acidic conditions is critical for the formation of monodisperse mesostructured polymer nanospheres. Owing to unique structure of triazine stabilized in the covalent polymeric networks during the pyrolysis process, the derived mesoporous carbon nanospheres possess an ultrahigh nitrogen content (up to 15.6 wt%) even after pyrolysis at 800 °C, which is the highest nitrogen content among mesoporous carbon nanospheres. Furthermore, these monodisperse mesoporous carbon nanospheres possess a high surface area (≈883 m2 g-1 ) and large pore size (≈8.1 nm). As an anode for sodium-ion batteries, the ultrahigh nitrogen-containing mesoporous carbon nanospheres exhibit superior rate capability (117 mAh g-1 at a high current density of 3 A g-1 ) and high reversible capacity (373 mAh g-1 at 0.06 A g-1 ), indicating a promising material for energy storage.

17.
Natl Sci Rev ; 8(4): nwaa126, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34691608

RESUMEN

The functionalization of otherwise unreactive C-H bonds adds a new dimension to synthetic chemistry, yielding useful molecules for a range of applications. Arylation has emerged as an increasingly viable strategy for functionalization of heteroarenes which constitute an important class of structural moieties for organic materials. However, direct bisarylation of heteroarenes to enable aryl-heteroaryl-aryl bond formation remains a formidable challenge, due to the strong coordination between heteroatom of N or S and transitional metals. Here we report Pd interstitial nanocatalysts supported on ordered mesoporous carbon as catalysts for a direct and highly efficient bisarylation method for five-membered heteroarenes that allows for green and mild reaction conditions. Notably, in the absence of any base, ligands and phase transfer agents, high activity (turn-over frequency, TOF, up to 107 h-1) and selectivity (>99%) for the 2,5-bisarylation of five-membered heteroarenes are achieved in water. A combination of characterization reveals that the remarkable catalytic reactivity here is attributable to the parallel adsorption of heteroarene over Pd clusters, which breaks the barrier to electron transfer in traditional homogenous catalysis and creates dual electrophilic sites for aryl radicals and adsorbate at C2 and C5 positions. The d-band filling at Pd sites shows a linear relationship with activation entropy and catalytic activity. The ordered mesopores facilitate the absence of a mass transfer effect. These findings suggest alternative synthesis pathways for the design, synthesis and understanding of a large number of organic chemicals by ordered mesoporous carbon supported palladium catalysts.

18.
Chem Rev ; 121(23): 14349-14429, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34609850

RESUMEN

Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.


Asunto(s)
Ingeniería , Micelas , Catálisis , Porosidad
19.
Nano Lett ; 21(14): 6071-6079, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34269590

RESUMEN

Streamlined architectures with a low fluid-resistance coefficient have been receiving great attention in various fields. However, it is still a great challenge to synthesize streamlined architecture with tunable surface curvature at the nanoscale. Herein, we report a facile interfacial dynamic migration strategy for the synthesis of streamlined mesoporous nanotadpoles with varied architectures. These tadpole-like nanoparticles possess a big streamlined head and a slender tail, which exhibit large inner cavities (75-170 nm), high surface areas (424-488 m2 g-1), and uniform mesopore sizes (2.4-3.2 nm). The head curvature of the streamlined mesoporous nanoparticles can be well-tuned from ∼2.96 × 10-2 to ∼5.56 × 10-2 nm-1, and the tail length can also be regulated from ∼30 to ∼650 nm. By selectively loading the Fe3O4 catalyst in the cavity of the streamlined silica nanotadpoles, the H2O2-driven mesoporous nanomotors were designed. The mesoporous nanomotors with optimized structural parameters exhibit outstanding directionality and a diffusion coefficient of 8.15 µm2 s-1.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Catálisis , Peróxido de Hidrógeno , Porosidad
20.
Adv Mater ; 33(23): e2100820, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33914372

RESUMEN

Ultrafine nanoparticles with organic-inorganic hybridization have essential roles in myriad applications. Over the past three decades, although various efforts on the formation of organic or inorganic ultrasmall nanoparticles have been made, ultrafine organic-inorganic hybrid nanoparticles have scarcely been achieved. Herein, a family of ultrasmall hybrid nanoparticles with a monodisperse, uniform size is synthesized by a facile thermo-kinetics-mediated copolymer monomicelle approach. These thermo-kinetics-mediated monomicelles with amphiphilic ABC triblock copolymers are structurally robust due to their solidified polystyrene core, endowing them with ultrahigh thermodynamic stability, which is difficult to achieve using Pluronic surfactant-based micelles (e.g., F127). This great stability combined with a core-shell-corona structure makes the monodispersed monomicelles a robust template for the precise synthesis of ultrasmall hybrid nanoparticles with a highly uniform size. As a demonstration, the obtained micelles/SiO2 hybrid nanoparticles display ultrafine sizes, excellent uniformity, monodispersity, and tunable structural parameters (diameters: 24-47 nm and thin shell thickness: 2.0-4.0 nm). Notably, this approach is universal for creating a variety of multifunctional ultrasmall hybrid nanostructures, involving organic/organic micelle/polymers (polydopamine) nanoparticles, organic/inorganic micelle/metal oxides (ZnO, TiO2 , Fe2 O3 ), micelle/hydroxides (Co(OH)2 ), micelle/noble metals (Ag), and micelle/TiO2 /SiO2 hybrid composites. As a proof of concept, the ultrasmall micelle/SiO2 hybrid nanoparticles demonstrate superior toughness as biomimetic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA