Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 2917-2938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525010

RESUMEN

Introduction: Periodontitis, a chronic inflammatory disease prevalent worldwide, is primarily treated through GTR for tissue regeneration. The efficacy of GTR, however, remains uncertain due to potential infections and the intricate microenvironment of periodontal tissue. Herein, We developed a novel core-shell structure multifunctional membrane using a dual-drug-loaded coaxial electrospinning technique (Lys/ACP-CNF), contains L-lysine in the outer layer to aid in controlling biofilms after GTR regenerative surgery, and ACP in the inner layer to enhance osteogenic performance for accelerating alveolar bone repair. Methods: The biocompatibility and cell adhesion were evaluated through CCK-8 and fluorescence imaging, respectively. The antibacterial activity was assessed using a plate counting assay. ALP, ARS, and RT-qPCR were used to examine osteogenic differentiation. Additionally, an in vivo experiment was conducted on a rat model with acute periodontal defect and infection. Micro-CT and histological analysis were utilized to analyze the in vivo alveolar bone regeneration. Results: Structural and physicochemical characterization confirmed the successful construction of the core-shell fibrous structure. Additionally, the Lys/ACP-CNF showed strong antibacterial coaggregation effects and induced osteogenic differentiation of PDLSCs in vitro. The in vivo experiment confirmed that Lys/ACP-CNF promotes new bone formation. Conclusion: Lys/ACP-CNF rapidly exhibited excellent antibacterial activity, protected PDLSCs from infection, and was conducive to osteogenesis, demonstrating its potential application for clinical periodontal GTR surgery.


Asunto(s)
Fosfatos de Calcio , Nanofibras , Osteogénesis , Ratas , Animales , Lisina/metabolismo , Diferenciación Celular , Antibacterianos/farmacología , Antibacterianos/metabolismo , Ligamento Periodontal
2.
Microb Cell Fact ; 22(1): 181, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704986

RESUMEN

BACKGROUND: The advantages of γ-cyclodextrin (γ-CD) include its high solubility, ability to form inclusion complexes with various poorly water-soluble molecules, and favorable toxicological profile; thus, γ-CD is an attractive functional excipient widely used in many industrial settings. Unfortunately, the high cost of γ-CD caused by the low activity and stability of γ-cyclodextrin glycosyltransferase (γ-CGTase) has hampered large-scale production and application. RESULTS: This study reports the in vivo one-step production of immobilized γ-CGTase decorated on the surface of polyhydroxyalkanoate (PHA) nanogranules by the N-terminal fusion of γ-CGTase to PHA synthase via a designed linker. The immobilized γ-CGTase-PHA nanogranules showed outstanding cyclization activity of 61.25 ± 3.94 U/mg (γ-CGTase protein) and hydrolysis activity of 36,273.99 ± 1892.49 U/mg, 44.74% and 18.83% higher than that of free γ-CGTase, respectively. The nanogranules also exhibited wider optimal pH (cyclization activity 7.0-9.0, hydrolysis activity 10.0-11.0) and temperature (55-60 °C) ranges and remarkable thermo- and pH-stability, expanding its utility to adapt to wider and more severe reaction conditions than the free enzyme. A high yield of CDs (22.73%) converted from starch and a high ratio (90.86%) of γ-CD in the catalysate were achieved at pH 9.0 and 50 °C for 10 h with 1 mmol/L K+, Ca2+, and Mg2+ added to the reaction system. Moreover, γ-CGTase-PHA beads can be used at least eight times, retaining 82.04% of its initial hydrolysis activity and 75.73% of its initial cyclization activity. CONCLUSIONS: This study provides a promising nanobiocatalyst for the cost-efficient production of γ-CD, which could greatly facilitate process control and economize the production cost.


Asunto(s)
Polihidroxialcanoatos , gamma-Ciclodextrinas , Glucosiltransferasas , Catálisis
3.
J Plant Physiol ; 287: 154003, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301035

RESUMEN

Leymus chinensis, a perennial native forage grass, is widely distributed in the steppes of Inner Mongolia as the dominant species. The main reproductive strategy of this grass is clonal propagation, which occurs via the proliferation of subterranean horizontal stems known as rhizomes. To elucidate the mechanism underlying rhizome development in this grass, we collected 60 accessions of L. chinensis and evaluated their rhizome development. One accession, which we named SR-74 (Strong Rhizomes), had significantly better rhizome development capacity than the accession WR-16 (Weak Rhizomes) in terms of rhizome number, total and primary rhizome length, and number of rhizome seedlings. Rhizome elongation was positively correlated with the number of internodes in the rhizome, which affected plant biomass. Compared to WR-16, SR-74 had higher rhizome tip hardness, higher abundance of transcripts participating in the biosynthesis of cell wall components, and higher levels of the metabolites L-phenylalanine, trans-cinnamic acid, 3-coumaric acid, ferulic acid, and coniferin. These metabolites in the phenylpropanoid biosynthesis pathway are precursors of lignin. In addition, SR-74 rhizomes contained higher amounts of auxin and auxin metabolites, including L-Trp, IPA, IBA, IAA and IAA-Asp, as well as upregulated expression of the auxin biosynthesis and signaling genes YUCCA6, YUCCA8, YUCCA10, YUCCA11, PIN1, PIN2, UGT1, UGT2, UGT4, UGT10, GH3, IAA7, IAA23, and IAA30. We propose a network between auxin signaling and the cell wall underlying rhizome development in L. chinensis.


Asunto(s)
Poaceae , Rizoma , Rizoma/genética , Poaceae/genética , Biomasa , Plantones , Pared Celular
4.
Anal Chem ; 94(39): 13598-13606, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36124415

RESUMEN

Graphdiyne (GDY) has been considered as an appealing electrode material for electrochemical sensing because of its alkyne-rich structure and high degrees of π-conjugation, which shows great affinity to heavy metal ions and pollutant molecules via d-π and π-π interactions. However, the low surface area and poor conductivity of bulk GDY limit its electrochemical performance. Herein, a two-dimensional ultrathin GDY/graphene (GDY/G) nanostructure was synthesized and used as an electrode material for electrochemical sensing. Graphene plays the role of an epitaxy template for few-layered GDY growth and conductive layers. The formed few-layered GDY with a high surface area possesses abundant affinity sites toward heavy metal ions (Cd2+, Pb2+) and toxic molecules, for example, nitrobenzene and 4-nitrophenol, via d-π and π-π interactions, respectively. Moreover, hemin as a key part of the enzyme catalytic motif was immobilized on GDY/G via π-π interactions. The artificial enzyme mimic hemin/GDY/G-modified electrode exhibited promising ascorbic acid and uric acid detection performance with excellent sensitivity and selectivity, a good linear range, and reproducibility. More importantly, real sample detection and the feasibility of this electrochemical sensor as a wearable biosensor were demonstrated.


Asunto(s)
Contaminantes Ambientales , Grafito , Alquinos , Ácido Ascórbico , Cadmio , Grafito/química , Hemina/química , Iones , Plomo , Nitrobencenos , Reproducibilidad de los Resultados , Ácido Úrico
5.
Cell Mol Life Sci ; 79(3): 137, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35182235

RESUMEN

Renal interstitial fibrosis is the pathological basis of end-stage renal disease, in which the heterogeneity of macrophages in renal microenvironment plays an important role. However, the molecular mechanisms of macrophage plasticity during renal fibrosis progression remain unclear. In this study, we found for the first time that increased expression of Twist1 in macrophages was significantly associated with the severity of renal fibrosis in IgA nephropathy patients and mice with unilateral ureteral obstruction (UUO). Ablation of Twist1 in macrophages markedly alleviated renal tubular injury and renal fibrosis in UUO mice, accompanied by a lower extent of macrophage infiltration and M2 polarization in the kidney. The knockdown of Twist1 inhibited the chemotaxis and migration of macrophages, at least partially, through the CCL2/CCR2 axis. Twist1 downregulation inhibited M2 macrophage polarization and reduced the secretion of the profibrotic factors Arg-1, MR (CD206), IL-10, and TGF-ß. Galectin-3 was decreased in the macrophages of the conditional Twist1-deficient mice, and Twist1 was shown to directly activate galectin-3 transcription. Up-regulation of galectin-3 recovered Twist1-mediated M2 macrophage polarization. In conclusion, Twist1/galectin-3 signaling regulates macrophage plasticity (M2 phenotype) and promotes renal fibrosis. This study could suggest new strategies for delaying kidney fibrosis in patients with chronic kidney disease.


Asunto(s)
Fibrosis/patología , Galectina 3/metabolismo , Enfermedades Renales/patología , Activación de Macrófagos , Proteína 1 Relacionada con Twist/metabolismo , Obstrucción Ureteral/complicaciones , Animales , Fibrosis/etiología , Fibrosis/metabolismo , Galectina 3/genética , Humanos , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Proteína 1 Relacionada con Twist/genética
6.
J Mol Cell Biol ; 11(5): 371-382, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30032308

RESUMEN

Hypoxia plays an important role in the genesis and progression of renal fibrosis. The underlying mechanisms, however, have not been sufficiently elucidated. We examined the role of p53 in hypoxia-induced renal fibrosis in cell culture (human and rat renal tubular epithelial cells) and a mouse unilateral ureteral obstruction (UUO) model. Cell cycle of tubular cells was determined by flow cytometry, and the expression of profibrogenic factors was determined by RT-PCR, immunohistochemistry, and western blotting. Chromatin immunoprecipitation and luciferase reporter experiments were performed to explore the effect of HIF-1α on p53 expression. We showed that, in hypoxic tubular cells, p53 upregulation suppressed the expression of CDK1 and cyclins B1 and D1, leading to cell cycle (G2/M) arrest (or delay) and higher expression of TGF-ß, CTGF, collagens, and fibronectin. p53 suppression by siRNA or by a specific p53 inhibitor (PIF-α) triggered opposite effects preventing the G2/M arrest and profibrotic changes. In vivo experiments in the UUO model revealed similar antifibrotic results following intraperitoneal administration of PIF-α (2.2 mg/kg). Using gain-of-function, loss-of-function, and luciferase assays, we further identified an HRE3 region on the p53 promoter as the HIF-1α-binding site. The HIF-1α-HRE3 binding resulted in a sharp transcriptional activation of p53. Collectively, we show the presence of a hypoxia-activated, p53-responsive profibrogenic pathway in the kidney. During hypoxia, p53 upregulation induced by HIF-1α suppresses cell cycle progression, leading to the accumulation of G2/M cells, and activates profibrotic TGF-ß and CTGF-mediated signaling pathways, causing extracellular matrix production and renal fibrosis.


Asunto(s)
Hipoxia de la Célula , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Sitios de Unión , Línea Celular , Modelos Animales de Enfermedad , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Activación Transcripcional , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA