Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Nucleic Acids Res ; 51(3): 1050-1066, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36660824

RESUMEN

While linear ubiquitin plays critical roles in multiple cell signaling pathways, few substrates have been identified. Global profiling of linear ubiquitin substrates represents a significant challenge because of the low endogenous level of linear ubiquitination and the background interference arising from highly abundant ubiquitin linkages (e.g. K48- and K63-) and from the non-specific attachment of interfering proteins to the linear polyubiquitin chain. We developed a bio-orthogonal linear ubiquitin probe by site-specific encoding of a norbornene amino acid on ubiquitin (NAEK-Ub). This probe facilitates covalent labeling of linear ubiquitin substrates in live cells and enables selective enrichment and identification of linear ubiquitin-modified proteins. Given the fact that the frequent overexpression of the linear linkage-specific deubiquitinase OTULIN correlates with poor prognosis in glioblastoma, we demonstrated the feasibility of the NAEK-Ub strategy by identifying and validating substrates of linear ubiquitination in patient-derived glioblastoma stem-like cells (GSCs). We identified STAT3 as a bona fide substrate of linear ubiquitin, and showed that linear ubiquitination negatively regulates STAT3 activity by recruitment of the phosphatase TC-PTP to STAT3. Furthermore, we demonstrated that preferential expression of OTULIN in GSCs restricts linear ubiquitination on STAT3 and drives persistent STAT3 signaling, and thereby maintains the stemness and self-renewal of GSCs.


Asunto(s)
Glioblastoma , Factor de Transcripción STAT3 , Ubiquitina , Humanos , Poliubiquitina/genética , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
4.
J Biol Chem ; 298(11): 102561, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36198360

RESUMEN

Cancer cells have distinctive demands for intermediates from glucose metabolism for biosynthesis and energy in different cell cycle phases. However, how cell cycle regulators and glycolytic enzymes coordinate to orchestrate the essential metabolic processes are still poorly characterized. Here, we report a novel interaction between the mitotic kinase, Aurora A, and the glycolytic enzyme, pyruvate kinase M2 (PKM2), in the interphase of the cell cycle. We found Aurora A-mediated phosphorylation of PKM2 at threonine 45. This phosphorylation significantly attenuated PKM2 enzymatic activity by reducing its tetramerization and also promoted glycolytic flux and the branching anabolic pathways. Replacing the endogenous PKM2 with a nonphosphorylated PKM2 T45A mutant inhibited glycolysis, glycolytic branching pathways, and tumor growth in both in vitro and in vivo models. Together, our study revealed a new protumor function of Aurora A through modulating a rate-limiting glycolytic enzyme, PKM2, mainly during the S phase of the cell cycle. Our findings also showed that although both Aurora A and Aurora B kinase phosphorylate PKM2 at the same residue, the spatial and temporal regulations of the specific kinase and PKM2 interaction are context dependent, indicating intricate interconnectivity between cell cycle and glycolytic regulators.


Asunto(s)
Leucemia Mieloide Aguda , Piruvato Quinasa , Humanos , Piruvato Quinasa/metabolismo , Fosforilación , Ácido Pirúvico/metabolismo , Línea Celular Tumoral , Glucólisis , División Celular
5.
Proc Natl Acad Sci U S A ; 119(34): e2202821119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969743

RESUMEN

Sonic hedgehog (Shh) signaling plays a critical role in regulating cerebellum development by maintaining the physiological proliferation of granule neuron precursors (GNPs), and its dysregulation leads to the oncogenesis of medulloblastoma. O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuitry. Here, we demonstrate that O-GlcNAc transferase (OGT) in GNPs mediate the cerebellum development, and the progression of the Shh subgroup of medulloblastoma. Specifically, OGT regulates the neurogenesis of GNPs by activating the Shh signaling pathway via O-GlcNAcylation at S355 of GLI family zinc finger 2 (Gli2), which in turn promotes its deacetylation and transcriptional activity via dissociation from p300, a histone acetyltransferases. Inhibition of OGT via genetic ablation or chemical inhibition improves survival in a medulloblastoma mouse model. These data uncover a critical role for O-GlcNAc signaling in cerebellar development, and pinpoint a potential therapeutic target for Shh-associated medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Cerebelo/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Neurogénesis/fisiología
6.
Neurosci Bull ; 38(2): 113-134, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34773221

RESUMEN

Mutations of the X-linked methyl-CpG-binding protein 2 (MECP2) gene in humans are responsible for most cases of Rett syndrome (RTT), an X-linked progressive neurological disorder. While genome-wide screens in clinical trials have revealed several putative RTT-associated mutations in MECP2, their causal relevance regarding the functional regulation of MeCP2 at the etiologic sites at the protein level requires more evidence. In this study, we demonstrated that MeCP2 was dynamically modified by O-linked-ß-N-acetylglucosamine (O-GlcNAc) at threonine 203 (T203), an etiologic site in RTT patients. Disruption of the O-GlcNAcylation of MeCP2 specifically at T203 impaired dendrite development and spine maturation in cultured hippocampal neurons, and disrupted neuronal migration, dendritic spine morphogenesis, and caused dysfunction of synaptic transmission in the developing and juvenile mouse cerebral cortex. Mechanistically, genetic disruption of O-GlcNAcylation at T203 on MeCP2 decreased the neuronal activity-induced induction of Bdnf transcription. Our study highlights the critical role of MeCP2 T203 O-GlcNAcylation in neural development and synaptic transmission potentially via brain-derived neurotrophic factor.


Asunto(s)
Trastornos del Neurodesarrollo , Síndrome de Rett , Animales , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Trastornos del Neurodesarrollo/genética , Síndrome de Rett/genética , Transmisión Sináptica , Treonina
7.
Anal Chem ; 93(25): 8711-8718, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34110778

RESUMEN

Quantitative proteomics/metabolomics investigation of laser-capture-microdissection (LCM) cell populations from clinical cohorts affords precise insights into disease/therapeutic mechanisms, nonetheless high-quality quantification remains a prominent challenge. Here, we devised an LC/MS-based approach allowing parallel, robust global-proteomics and targeted-metabolomics quantification from the same LCM samples, using biopsies from prostate cancer (PCa) patients as the model system. The strategy features: (i) an optimized molecular weight cutoff (MWCO) filter-based separation of proteins and small-molecule fractions with high and consistent recoveries; (ii) microscale derivatization and charge-based enrichment for ultrasensitive quantification of key androgens (LOQ = 5 fg/1k cells) with excellent accuracy/precision; (iii) reproducible/precise proteomics quantification with low-missing-data using a detergent-cocktail-based sample preparation and an IonStar pipeline for reproducible and precise protein quantification with excellent data quality. Key parameters enabling robust/reproducible quantification have been meticulously evaluated and optimized, and the results underscored the importance of surveying quantitative performances against key parameters to facilitate fit-for-purpose method development. As a proof-of-concept, high-quality quantification of the proteome and androgens in LCM samples of PCa patient-matched cancerous and benign epithelial/stromal cells was achieved (N = 16), which suggested distinct androgen distribution patterns across cell types and regions, as well as the dysregulated pathways involved in tumor-stroma crosstalk in PCa pathology. This strategy markedly leverages the scope of quantitative-omics investigations using LCM samples, and combining with IonStar, can be readily adapted to larger-cohort clinical analysis. Moreover, the capacity of parallel proteomics/metabolomics quantification permits precise corroboration of regulatory processes on both protein and small-molecule levels, with decreased batch effect and enhanced utilization of samples.


Asunto(s)
Metabolómica , Proteómica , Humanos , Captura por Microdisección con Láser , Rayos Láser , Masculino , Neoplasias de la Próstata , Proteoma , Espectrometría de Masas en Tándem
8.
Sci Rep ; 11(1): 10285, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986438

RESUMEN

Reversible lysine methylation is essential for regulating histones and emerges to critically regulate non-histone proteins as well. Here we show that the master transcription factor OCT4 in pluripotent stem cells (PSCs) was methylated at multiple lysine residues. LSD1 that is highly expressed in PSCs can directly interact with and demethylate OCT4 at lysine 222 (K222) in the flexible linker region. Reduced LSD1 activity led to the methylation of OCT4-K222 that diminished the differentiation potential of PSCs while facilitating proteasome-independent degradation of OCT4 proteins. Furthermore, site-specifically replacing K222 with phenylalanine to mimic the constitutively methylated lysine promoted the 'locked-in' mode engagement of the OCT4 PORE-homodimers that tightly bind to and block the transcription of multiple PORE-motif-containing target genes regulating cell fate determination and cell junction organization, and thereby reducing the pluripotency of PSCs. Thus, LSD1-mediated demethylation of OCT4 plays a crucial role in restricting the 'locked-in' mode binding of OCT4 PORE-homodimers to the PORE-motif-containing genes and thereby maintaining their transcription to safeguard the pluripotency of PSCs.


Asunto(s)
Secuencias de Aminoácidos , Histona Demetilasas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Transcripción Genética , Secuencia de Aminoácidos , Diferenciación Celular , Desmetilación del ADN , Humanos , Células Madre Pluripotentes/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Homología de Secuencia de Aminoácido
9.
Nat Metab ; 2(3): 256-269, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32694775

RESUMEN

The transcriptional role of cMyc (or Myc) in tumorigenesis is well appreciated; however, it remains to be fully established how extensively Myc is involved in the epigenetic regulation of gene expression. Here, we show that by deactivating succinate dehydrogenase complex subunit A (SDHA) via acetylation, Myc triggers a regulatory cascade in cancer cells that leads to H3K4me3 activation and gene expression. We find that Myc facilitates the acetylation-dependent deactivation of SDHA by activating the SKP2-mediated degradation of SIRT3 deacetylase. We further demonstrate that Myc inhibition of SDH-complex activity leads to cellular succinate accumulation, which triggers H3K4me3 activation and tumour-specific gene expression. We demonstrate that acetylated SDHA at Lys 335 contributes to tumour growth in vitro and in vivo, and we confirm increased tumorigenesis in clinical samples. This study illustrates a link between acetylation-dependent SDHA deactivation and Myc-driven epigenetic regulation of gene expression, which is critical for cancer progression.


Asunto(s)
Transformación Celular Neoplásica , Complejo II de Transporte de Electrones/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetilación , Ciclo del Ácido Cítrico , Complejo II de Transporte de Electrones/genética , Epigénesis Genética , Células HEK293 , Humanos , Ácido Succínico/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(14): 7755-7763, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32193337

RESUMEN

Methionine metabolism is critical for the maintenance of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) pluripotency. However, little is known about the regulation of the methionine cycle to sustain ESC pluripotency. Here, we show that adenosylhomocysteinase (AHCY), an important enzyme in the methionine cycle, is critical for the maintenance and differentiation of mouse embryonic stem cells (mESCs). We show that mESCs exhibit high levels of methionine metabolism, whereas decreasing methionine metabolism via depletion of AHCY promotes mESCs to differentiate into the three germ layers. AHCY is posttranslationally modified with an O-linked ß-N-acetylglucosamine sugar (O-GlcNAcylation), which is rapidly removed upon differentiation. O-GlcNAcylation of threonine 136 on AHCY increases its activity and is important for the maintenance of trimethylation of histone H3 lysine 4 (H3K4me3) to sustain mESC pluripotency. Blocking glycosylation of AHCY decreases the ratio of S-adenosylmethionine versus S-adenosylhomocysteine (SAM/SAH), reduces the level of H3K4me3, and poises mESC for differentiation. In addition, blocking glycosylation of AHCY reduces somatic cell reprogramming. Thus, our findings reveal a critical role of AHCY and a mechanistic understanding of O-glycosylation in regulating ESC pluripotency and differentiation.


Asunto(s)
Metionina/metabolismo , Células Madre Pluripotentes/metabolismo , Adenosilhomocisteinasa/metabolismo , Animales , Autorrenovación de las Células , Reprogramación Celular , Glicosilación , Células HEK293 , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células 3T3 NIH
11.
Nat Commun ; 11(1): 36, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911580

RESUMEN

Many cancer cells display enhanced glycolysis and suppressed mitochondrial metabolism. This phenomenon, known as the Warburg effect, is critical for tumor development. However, how cancer cells coordinate glucose metabolism through glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle is largely unknown. We demonstrate here that phosphoglycerate kinase 1 (PGK1), the first ATP-producing enzyme in glycolysis, is reversibly and dynamically modified with O-linked N-acetylglucosamine (O-GlcNAc) at threonine 255 (T255). O-GlcNAcylation activates PGK1 activity to enhance lactate production, and simultaneously induces PGK1 translocation into mitochondria. Inside mitochondria, PGK1 acts as a kinase to inhibit pyruvate dehydrogenase (PDH) complex to reduce oxidative phosphorylation. Blocking T255 O-GlcNAcylation of PGK1 decreases colon cancer cell proliferation, suppresses glycolysis, enhances the TCA cycle, and inhibits tumor growth in xenograft models. Furthermore, PGK1 O-GlcNAcylation levels are elevated in human colon cancers. This study highlights O-GlcNAcylation as an important signal for coordinating glycolysis and the TCA cycle to promote tumorigenesis.


Asunto(s)
Acetilglucosamina/metabolismo , Ciclo del Ácido Cítrico , Neoplasias del Colon/enzimología , Glucólisis , Fosfoglicerato Quinasa/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo
12.
Nat Commun ; 10(1): 5566, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804482

RESUMEN

Overexpressed Aurora-A kinase promotes tumor growth through various pathways, but whether Aurora-A is also involved in metabolic reprogramming-mediated cancer progression remains unknown. Here, we report that Aurora-A directly interacts with and phosphorylates lactate dehydrogenase B (LDHB), a subunit of the tetrameric enzyme LDH that catalyzes the interconversion between pyruvate and lactate. Aurora-A-mediated phosphorylation of LDHB serine 162 significantly increases its activity in reducing pyruvate to lactate, which efficiently promotes NAD+ regeneration, glycolytic flux, lactate production and bio-synthesis with glycolytic intermediates. Mechanistically, LDHB serine 162 phosphorylation relieves its substrate inhibition effect by pyruvate, resulting in remarkable elevation in the conversions of pyruvate and NADH to lactate and NAD+. Blocking S162 phosphorylation by expression of a LDHB-S162A mutant inhibited glycolysis and tumor growth in cancer cells and xenograft models. This study uncovers a function of Aurora-A in glycolytic modulation and a mechanism through which LDHB directly contributes to the Warburg effect.


Asunto(s)
Aurora Quinasa A/metabolismo , Glucólisis , L-Lactato Deshidrogenasa/metabolismo , Animales , Aurora Quinasa A/antagonistas & inhibidores , Azepinas/farmacología , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/genética , Ácido Láctico/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Pirimidinas/farmacología , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacología , Serina/genética , Serina/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cell Rep ; 28(9): 2386-2396.e5, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461653

RESUMEN

It is known that lethal viruses profoundly manipulate host metabolism, but how the metabolism alternation affects the immediate host antiviral immunity remains elusive. Here, we report that the O-GlcNAcylation of mitochondrial antiviral-signaling protein (MAVS), a key mediator of interferon signaling, is a critical regulation to activate the host innate immunity against RNA viruses. We show that O-GlcNAcylation depletion in myeloid cells renders the host more susceptible to virus infection both in vitro and in vivo. Mechanistically, we demonstrate that MAVS O-GlcNAcylation is required for virus-induced MAVS K63-linked ubiquitination, thereby facilitating IRF3 activation and IFNß production. We further demonstrate that D-glucosamine, a commonly used dietary supplement, effectively protects mice against a range of lethal RNA viruses, including human influenza virus. Our study highlights a critical role of O-GlcNAcylation in regulating host antiviral immunity and validates D-glucosamine as a potential therapeutic for virus infections.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunidad Innata , Infecciones por Orthomyxoviridae/inmunología , Procesamiento Proteico-Postraduccional , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Chlorocebus aethiops , Femenino , Glucosamina/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Células Mieloides/metabolismo , Células Mieloides/virología , Transducción de Señal , Células Vero
14.
J Pharm Biomed Anal ; 175: 112792, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31377653

RESUMEN

Establishing reliable bioanalytical methods is essential to support pharmacokinetic (PK) studies in the preclinical and clinical evaluation of monoclonal antibody (mAb) drugs. Ligand binding assay (LBA) has always been the gold standard for protein quantification, whereas LC-MS has gradually become a promising alternative method for the study of pharmacokinetics of biotherapeutics with its advantages of accuracy and rapid method development. Here, we described for the first time two liquid chromatography-mass spectrometry (LC-MS) methods with different purification pretreatments, protein precipitation and immune affinity (IA) enrichment, along with one electrochemiluminescence (ECL) method for the quantification of an anti-CD47 monoclonal antibody (SHR-1603) in rat and cynomolgus monkey serum. An anti-adsorption reagent was added and digestion conditions were optimized to resolve the absorption issue of hydrophobic peptide in this study. These methods were all validated according to China Food and Drug Administration (CFDA) and European Medicines Agency (EMA) guidelines and were successfully applied to a preclinical study for the quantification of SHR-1603. The respective quantitative ranges of the three methods are respectively 250-500,000 ng/mL (protein precipitation), 100-100,000 ng/mL (IA) and 19.5-10,000 ng/mL (ECL). The two LC-MS methods were compared with ECL method respectively by the cross-validation using the Passing-Bablok regression and Bland-Altman plots. Systematic differences and proportional bias were observed between two LC-MS methods on the one hand and with the ECL method on the other hand. The drug concentrations obtained by the three methods showed good agreement in the low-dose group (ratios of drug exposure, 1.05-1.11), whereas the drug concentrations measured using the LC-MS methods were higher than those obtained by the ECL method in medium-dose and high-dose groups, which can be attributed to the forms of antibodies being determined (free and total). In conclusion, the established LC-MS methods exhibited superior accuracy, efficiency and cost-effectiveness for the PK assessment of SHR-1603 in the preclinical study. Thus, it provides a promising alternative to LBA in pre-clinical and clinical evaluation studies of mAb drugs in various matrices to facilitate the development of anti-tumor drugs.


Asunto(s)
Anticuerpos Monoclonales/sangre , Antígeno CD47/metabolismo , Suero/química , Animales , China , Cromatografía Liquida/métodos , Humanos , Macaca fascicularis , Péptidos/metabolismo , Ratas , Ratas Endogámicas SHR , Espectrometría de Masas en Tándem/métodos
15.
Proc Natl Acad Sci U S A ; 116(16): 7857-7866, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30940748

RESUMEN

Protein synthesis is essential for cell growth, proliferation, and survival. Protein synthesis is a tightly regulated process that involves multiple mechanisms. Deregulation of protein synthesis is considered as a key factor in the development and progression of a number of diseases, such as cancer. Here we show that the dynamic modification of proteins by O-linked ß-N-acetyl-glucosamine (O-GlcNAcylation) regulates translation initiation by modifying core initiation factors eIF4A and eIF4G, respectively. Mechanistically, site-specific O-GlcNAcylation of eIF4A on Ser322/323 disrupts the formation of the translation initiation complex by perturbing its interaction with eIF4G. In addition, O-GlcNAcylation inhibits the duplex unwinding activity of eIF4A, leading to impaired protein synthesis, and decreased cell proliferation. In contrast, site-specific O-GlcNAcylation of eIF4G on Ser61 promotes its interaction with poly(A)-binding protein (PABP) and poly(A) mRNA. Depletion of eIF4G O-GlcNAcylation results in inhibition of protein synthesis, cell proliferation, and soft agar colony formation. The differential glycosylation of eIF4A and eIF4G appears to be regulated in the initiation complex to fine-tune protein synthesis. Our study thus expands the current understanding of protein synthesis, and adds another dimension of complexity to translational control of cellular proteins.


Asunto(s)
Glicosilación , Iniciación de la Cadena Peptídica Traduccional , Línea Celular Tumoral , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Modelos Moleculares , Neoplasias/química , Neoplasias/metabolismo , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo
16.
Nat Commun ; 10(1): 273, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655516

RESUMEN

Faithful chromosome segregation requires proper chromosome congression at prometaphase and dynamic maintenance of the aligned chromosomes at metaphase. Chromosome missegregation can result in aneuploidy, birth defects and cancer. The kinetochore-bound KMN network and the kinesin motor CENP-E are critical for kinetochore-microtubule attachment and chromosome stability. The linear ubiquitin chain assembly complex (LUBAC) attaches linear ubiquitin chains to substrates, with well-established roles in immune response. Here, we identify LUBAC as a key player of chromosome alignment during mitosis. LUBAC catalyzes linear ubiquitination of the kinetochore motor CENP-E, which is specifically required for the localization of CENP-E at attached kinetochores, but not unattached ones. KNL1 acts as a receptor of linear ubiquitin chains to anchor CENP-E at attached kinetochores in prometaphase and metaphase. Thus, linear ubiquitination promotes chromosome congression and dynamic chromosome alignment by coupling the dynamic kinetochore microtubule receptor CENP-E to the static one, the KMN network.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Fibroblastos , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Mitosis , Cultivo Primario de Células , ARN Interferente Pequeño/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
17.
ACS Chem Biol ; 14(1): 4-10, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30620550

RESUMEN

O-linked N-acetylglucosamine ( O-GlcNAc) is a ubiquitous post-translational modification of proteins and is essential for cell function. Quantifying the dynamics of O-GlcNAcylation in a proteome-wide level is critical for uncovering cellular mechanisms and functional roles of O-GlcNAcylation in cells. Here, we develop an isotope-coded photocleavable probe for profiling protein O-GlcNAcylation dynamics using quantitative mass spectrometry-based proteomics. This probe enables selective tagging and isotopic labeling of O-GlcNAcylated proteins in one step from complex cellular mixtures. We demonstrate the application of the probe to quantitatively profile O-GlcNAcylation sites in 293T cells upon chemical induction of O-GlcNAc levels. We further applied the probe to quantitatively analyze the stoichiometry of O-GlcNAcylation between sorafenib-sensitive and sorafenib-resistant liver cancer cells, which lays the foundation for mechanistic investigation of O-GlcNAcylation in regulating cancer chemoresistance. Thus, this probe provides a powerful tool to profile O-GlcNAcylation dynamics in cells.


Asunto(s)
Acetilglucosamina/metabolismo , Marcaje Isotópico , Sondas Moleculares/química , Proteínas/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem
18.
Cell Rep ; 23(2): 389-403, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29641999

RESUMEN

The arginine methylation status of histones dynamically changes during many cellular processes, including hematopoietic stem/progenitor cell (HSPC) development. The arginine methyltransferases and the readers that transduce the histone codes have been defined. However, whether arginine demethylation actively occurs in cells and what enzyme demethylates the methylarginine residues during various cellular processes are unknown. We report that JMJD1B, previously identified as a lysine demethylase for H3K9me2, mediates arginine demethylation of H4R3me2s and its intermediate, H4R3me1. We show that demethylation of H4R3me2s and H3K9me2s in promoter regions is correlated with active gene expression. Furthermore, knockout of JMJD1B blocks demethylation of H4R3me2s and/or H3K9me2 at distinct clusters of genes and impairs the activation of genes important for HSPC differentiation and development. Consequently, JMJD1B-/- mice show defects in hematopoiesis. Altogether, our study demonstrates that demethylase-mediated active arginine demethylation process exists in eukaryotes and that JMJD1B demethylates both H4R3me2s and H3K9me2 for epigenetic programming during hematopoiesis.


Asunto(s)
Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Animales , Desmetilación , Epigénesis Genética , Femenino , Células HEK293 , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Histonas/química , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/deficiencia , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Proteína-Arginina N-Metiltransferasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especificidad por Sustrato
19.
Mass Spectrom Rev ; 36(6): 734-754, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-27097288

RESUMEN

In the last decade, the advancement of liquid chromatography mass spectrometry (LC/MS) techniques has enabled their broad application in protein characterization, both quantitatively and qualitatively. Owing to certain important merits of LC/MS techniques (e.g., high selectivity, flexibility, and rapid method development), LC/MS assays are often deemed as preferable alternatives to conventional methods (e.g., ligand-binding assays) for the analysis of protein biotherapeutics. At the discovery and development stages, LC/MS is generally employed for two purposes absolute quantification of protein biotherapeutics in biological samples and qualitative characterization of proteins. For absolute quantification of a target protein in bio-matrices, recent work has led to improvements in the efficiency of LC/MS method development, sample treatment, enrichment and digestion, and high-performance low-flow-LC separation. These advances have enhanced analytical sensitivity, specificity, and robustness. As to qualitative analysis, a range of techniques have been developed to characterize intramolecular disulfide bonds, glycosylation, charge variants, primary sequence heterogeneity, and the drug-to-antibody ratio of antibody drug conjugate (ADC), which has enabled a refined ability to assess product quality. In this review, we will focus on the discussion of technical challenges and strategies of LC/MS-based quantification and characterization of biotherapeutics, with the emphasis on the analysis of antibody-based biotherapeutics such as monoclonal antibodies (mAbs) and ADCs. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:734-754, 2017.


Asunto(s)
Anticuerpos Monoclonales/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Proteínas/análisis , Animales , Anticuerpos Monoclonales/uso terapéutico , Productos Biológicos/análisis , Disulfuros/análisis , Disulfuros/química , Descubrimiento de Drogas/métodos , Glicosilación , Humanos , Inmunoconjugados/análisis , Mapeo Peptídico/métodos , Proteínas/metabolismo , Proteínas/farmacocinética , Proteínas Recombinantes/análisis , Sensibilidad y Especificidad , Distribución Tisular
20.
J Biol Chem ; 291(35): 18353-69, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27369080

RESUMEN

Although the Oct4/Sox2 complex is crucial for maintaining the pluripotency of stem cells, the molecular basis underlying its regulation during lineage-specific differentiation remains unknown. Here, we revealed that the highly conserved Oct4/Lys-156 is important for maintaining the stability of the Oct4 protein and the intermolecular salt bridge between Oct4/Lys-151 and Sox2/Asp-107 that contributes to the Oct4/Sox2 interaction. Post-translational modifications at Lys-156 and K156N, a somatic mutation detected in bladder cancer patients, both impaired the Lys-151-Asp-107 salt bridge and the Oct4/Sox2 interaction. When produced as a recombinant protein or overexpressed in pluripotent stem cells, Oct4/K156N, with reduced binding to Sox2, significantly down-regulated the stemness genes that are cooperatively controlled by the Oct4/Sox2 complex and specifically up-regulated the mesendodermal genes and the SNAIL family genes that promote the epithelial-mesenchymal transition. Thus, we conclude that Oct4/Lys-156-modulated Oct4/Sox2 interaction coordinately controls the epithelial-mesenchymal transition and mesendoderm specification induced by specific differentiation signals.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Mesodermo/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción SOXB1/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Línea Celular , Humanos , Lisina/genética , Lisina/metabolismo , Mesodermo/citología , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Unión Proteica , Factores de Transcripción SOXB1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...