Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; (0)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38788191

RESUMEN

BACKGROUND: Renal mTORc2 plays a role in regulating renal K+-excretion (renal-EK) and K+-homeostasis. Inhibition of renal mTORc2 caused hyperkalemia due to suppressing epithelial-Na+-channel (ENaC) and ROMK (Kir1.1) in the collecting duct. We now explore whether mTORc2 of DCT regulates basolateral Kir4.1/Kir5.1, NCC and renal-EK. METHODS: We used patch-clamp-technique to examine basolateral Kir4.1/Kir5.1 in early-DCT, immunoblotting and immunofluorescence to examine NCC expression and in vivo measurement of urinary K+-excretion to determine baseline renal-EK in the mice treated with mTORc2-inhibitor and in DCT-specific Rapamycin-Insensitive-Companion- of-mTOR knockout (DCT-RICTOR-KO) mice. RESULTS: Inhibition of mTORc2 with AZD8055 abolished high-K+-induced inhibition of Kir4.1/Kir5.1 in DCT, high-K+-induced depolarization of DCT membrane and high-K+-induced suppression of pNCC expression. AZD8055 stimulated the 40-pS-inwardly-rectifying-K+ channel (Kir4.1/Kir5.1-heterotetramer) in early-DCT in the mice on overnight-high-K+, this effect was absent in the presence of PKC-inhibitor which also stimulated Kir4.1/Kir5.1. AZD8055-treatment decreased renal-EK in animals on overnight-high-K+. Deletion of RICTOR in the DCT increased the Kir4.1/Kir5.1-mediated K+-currents, hyperpolarized DCT membrane and increased the expression of pWNK4 and pNCC. Renal-EK was lower and plasma-K+ was higher in DCT-RICTOR-KO mice than corresponding control mice. Also, overnight-high-K+ did not inhibit Kir4.1/Kir5.1 activity in the DCT and failed to inhibit the expression of pNCC in DCT-RICTOR-KO mice. Overnight-high-K+ stimulated renal-EK in control mice, but this effect was attenuated in DCT-RICTOR-KO mice. Thus, overnight-high-K+ induced hyperkalemia in DCT-RICTOR-KO mice but not in control mice. CONCLUSIONS: mTORc2 of the DCT inhibits Kir4.1/Kir5.1 activity and NCC expression, and stimulates renal-EK during high-K+-intake.

2.
Sheng Li Xue Bao ; 76(1): 52-58, 2024 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-38444131

RESUMEN

The depolarization-activated current of intercalated cells in the distal nephron was detected for the first time, and the type of ion channel mediating the current was identified based on electrophysiological and pharmacological properties. The whole-cell current of distal nephron in kidney of C57BL/6J mice was recorded by Axon MultiClamp 700B patch-clamp system, and the effects of several K+ channel inhibitors on the depolarization-activated current in intercalated cells were observed. In addition, the immunofluorescence technique was used to investigate the localization of the channel in intercalated cells. The results showed that when K+ concentration of the bath solution was equal to intracellular fluid (140 mmol/L K+), the depolarization-activated current could be recorded in intercalated cells, but this current was not observed in the principal cells. The depolarization-activated current detected in the intercalated cells could be blocked by Kv4.1 inhibitors. The immunofluorescence experiment showed that the fluorescence of Kv4.1 protein was only present in intercalated cells and not observed in principal cells. Kv4.1 protein immunofluorescence was observed in the luminal and basolateral membrane of intercalated cells, but the fluorescence intensity of luminal membrane was higher than that of basolateral membrane. We conclude that the depolarization-activated current detected in intercalated cells is mediated by Kv4.1 and this channel is mainly expressed in the luminal membrane of intercalated cells.


Asunto(s)
Células Epiteliales , Riñón , Ratones , Animales , Ratones Endogámicos C57BL , Membrana Celular
3.
Hypertension ; 81(1): 126-137, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37909221

RESUMEN

BACKGROUND: Kir4.2 and Kir4.1 play a role in regulating membrane transport in the proximal tubule (PT) and in the distal-convoluted-tubule (DCT), respectively. METHODS: We generated kidney-tubule-specific-AT1aR-knockout (Ks-AT1aR-KO) mice to examine whether renal AT1aR regulates Kir4.2 and Kir4.1. RESULTS: Ks-AT1aR-KO mice had a lower systolic blood pressure than Agtr1aflox/flox (control) mice. Ks-AT1aR-KO mice had a lower expression of NHE3 (Na+/H+-exchanger 3) and Kir4.2, a major Kir-channel in PT, than Agtr1aflox/flox mice. Whole-cell recording also demonstrated that the membrane potential in PT of Ks-AT1aR-KO mice was lesser negative than Agtr1aflox/flox mice. The expression of Kir4.1 and Kir5.1, Kir4.1/Kir5.1-mediated K+ currents of DCT and DCT membrane potential in Ks-AT1aR-KO mice, were similar to Agtr1aflox/flox mice. However, angiotensin II perfusion for 7 days hyperpolarized the membrane potential in PT and DCT of the control mice but not in Ks-AT1aR-KO mice, while angiotensin II perfusion did not change the expression of Kir4.1, Kir4.2, and Kir5.1. Deletion of AT1aR did not significantly affect the expression of αENaC (epithelial Na+ channel) and ßENaC but increased cleaved γENaC expression. Patch-clamp experiments demonstrated that deletion of AT1aR increased amiloride-sensitive Na+-currents in the cortical-collecting duct but not in late-DCT. However, tertiapin-Q sensitive renal outer medullary potassium channel currents were similar in both genotypes. CONCLUSIONS: AT1aR determines the baseline membrane potential of PT by controlling Kir4.2 expression/activity but AT1aR is not required for determining the baseline membrane potential of the DCT and Kir4.1/Kir5.1 activity/expression. However, AT1aR is required for angiotensin II-induced hyperpolarization of basolateral membrane of PT and DCT. Deletion of AT1aR had no effect on baseline renal outer medullary potassium channel activity but increased ENaC activity in the CCD.


Asunto(s)
Canales de Potasio de Rectificación Interna , Receptor de Angiotensina Tipo 1 , Animales , Ratones , Angiotensina II/farmacología , Angiotensina II/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales Distales/metabolismo , Ratones Noqueados , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Sodio/metabolismo , Canales Epiteliales de Sodio
4.
J Am Soc Nephrol ; 34(6): 1019-1038, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36890646

RESUMEN

SIGNIFICANCE STATEMENT: Rapid renal responses to ingested potassium are essential to prevent hyperkalemia and also play a central role in blood pressure regulation. Although local extracellular K + concentration in kidney tissue is increasingly recognized as an important regulator of K + secretion, the underlying mechanisms that are relevant in vivo remain controversial. To assess the role of the signaling kinase mTOR complex-2 (mTORC2), the authors compared the effects of K + administered by gavage in wild-type mice and knockout mice with kidney tubule-specific inactivation of mTORC2. They found that mTORC2 is rapidly activated to trigger K + secretion and maintain electrolyte homeostasis. Downstream targets of mTORC2 implicated in epithelial sodium channel regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. These findings offer insight into electrolyte physiologic and regulatory mechanisms. BACKGROUND: Increasing evidence implicates the signaling kinase mTOR complex-2 (mTORC2) in rapid renal responses to changes in plasma potassium concentration [K + ]. However, the underlying cellular and molecular mechanisms that are relevant in vivo for these responses remain controversial. METHODS: We used Cre-Lox-mediated knockout of rapamycin-insensitive companion of TOR (Rictor) to inactivate mTORC2 in kidney tubule cells of mice. In a series of time-course experiments in wild-type and knockout mice, we assessed urinary and blood parameters and renal expression and activity of signaling molecules and transport proteins after a K + load by gavage. RESULTS: A K + load rapidly stimulated epithelial sodium channel (ENaC) processing, plasma membrane localization, and activity in wild-type, but not in knockout, mice. Downstream targets of mTORC2 implicated in ENaC regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. We observed differences in urine electrolytes within 60 minutes, and plasma [K + ] was greater in knockout mice within 3 hours of gavage. Renal outer medullary potassium (ROMK) channels were not acutely stimulated in wild-type or knockout mice, nor were phosphorylation of other mTORC2 substrates (PKC and Akt). CONCLUSIONS: The mTORC2-SGK1-Nedd4-2-ENaC signaling axis is a key mediator of rapid tubule cell responses to increased plasma [K + ] in vivo . The effects of K + on this signaling module are specific, in that other downstream mTORC2 targets, such as PKC and Akt, are not acutely affected, and ROMK and Large-conductance K + (BK) channels are not activated. These findings provide new insight into the signaling network and ion transport systems that underlie renal responses to K +in vivo .


Asunto(s)
Proteínas Inmediatas-Precoces , Potasio , Ratones , Animales , Fosforilación , Potasio/metabolismo , Canales Epiteliales de Sodio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Potasio en la Dieta , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Riñón/metabolismo , Proteínas Portadoras/metabolismo , Ratones Noqueados , Transporte Iónico
5.
JCI Insight ; 8(7)2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36821372

RESUMEN

We examine whether calcineurin or protein phosphatase 2B (PP2B) regulates the basolateral inwardly rectifying potassium channel Kir4.1/Kir5.1 in the distal convoluted tubule (DCT). Application of tacrolimus (FK506) or cyclosporine A (CsA) increased whole-cell Kir4.1/Kir5.1-mediated K+ currents and hyperpolarized the DCT membrane. Moreover, FK506-induced stimulation of Kir4.1/Kir5.1 was absent in kidney tubule-specific 12 kDa FK506-binding protein-knockout mice (Ks-FKBP-12-KO). In contrast, CsA stimulated Kir4.1/Kir5.1 of the DCT in Ks-FKBP-12-KO mice, suggesting that FK506-induced stimulation of Kir4.1/Kir5.1 was due to inhibiting PP2B. Single-channel patch-clamp experiments demonstrated that FK506 or CsA stimulated the basolateral Kir4.1/Kir5.1 activity of the DCT, defined by NPo (a product of channel number and open probability). However, this effect was absent in the DCT treated with Src family protein tyrosine kinase (SFK) inhibitor or hydroxyl peroxide. Fluorescence imaging demonstrated that CsA treatment increased membrane staining intensity of Kir4.1 in the DCT of Kcnj10fl/fl mice. Moreover, CsA treatment had no obvious effect on phosphorylated NaCl cotransporter (pNCC) expression in Ks-Kir4.1-KO mice. Immunoblotting showed acute FK506 treatment increased pNCC expression in Kcnj10fl/fl mice, but this effect was attenuated in Ks-Kir4.1-KO mice. In vivo measurement of thiazide-induced renal Na+ excretion demonstrated that FK506 enhanced thiazide-induced natriuresis. This effect was absent in Ks-FKBP-12-KO mice and blunted in Ks-Kir4.1-KO mice. We conclude that inhibition of PP2B stimulates Kir4.1/Kir5.1 of the DCT and NCC and that PP2B inhibition-induced stimulation of NCC is partially achieved by stimulation of the basolateral Kir4.1/Kir5.1.


Asunto(s)
Inhibidores de la Calcineurina , Cloruro de Sodio , Animales , Ratones , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Inhibidores de la Calcineurina/farmacología , Cloruro de Sodio/metabolismo , Tacrolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Ratones Noqueados , Tiazidas
6.
Front Physiol ; 13: 1039029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439248

RESUMEN

Basolateral potassium channels in the distal convoluted tubule (DCT) are composed of inwardly-rectifying potassium channel 4.1 (Kir4.1) and Kir5.1. Kir4.1 interacts with Kir5.1 to form a 40 pS K+ channel which is the only type K+ channel expressed in the basolateral membrane of the DCT. Moreover, Kir4.1/Kir5.1 heterotetramer plays a key role in determining the expression and activity of thiazide-sensitive Na-Cl cotransport (NCC). In addition to Kir4.1/Kir5.1, Kir1.1 (ROMK) is expressed in the apical membrane of the late DCT (DCT2) and plays a key role in mediating epithelial Na+ channel (ENaC)-dependent K+ excretion. High dietary-K+-intake (HK) stimulates ROMK and inhibits Kir4.1/Kir5.1 in the DCT. Inhibition of Kir4.1/Kir5.1 is essential for HK-induced suppression of NCC whereas the stimulation of ROMK is important for increasing ENaC-dependent K+ excretion during HK. We have now used the patch-clamp-technique to examine whether gender and Cl- content of K+-diet affect HK-induced inhibition of basolateral Kir4.1/Kir5.1 and HK-induced stimulation of ROMK. Single-channel-recording shows that basolateral 40 pS K+ channel (Kir4.1/Kir5.1) activity of the DCT defined by NPo was 1.34 (1% KCl, normal K, NK), 0.95 (5% KCl) and 1.03 (5% K+-citrate) in male mice while it was 1.47, 1.02 and 1.05 in female mice. The whole-cell recording shows that Kir4.1/Kir5.1-mediated-K+ current of the early-DCT (DCT1) was 1,170 pA (NK), 725 pA (5% KCl) and 700 pA (5% K+-citrate) in male mice whereas it was 1,125 pA, 674 pA and 700 pA in female mice. Moreover, K+-currents (IK) reversal potential of DCT (an index of membrane potential) was -63 mV (NK), -49 mV (5% KCl) and -49 mV (5% K-citrate) in the male mice whereas it was -63 mV, -50 mV and -50 mV in female mice. Finally, TPNQ-sensitive whole-cell ROMK-currents in the DCT2 /initial-connecting tubule (CNT) were 910 pA (NK), 1,520 pA (5% KCl) and 1,540 pA (5% K+-citrate) in male mice whereas the ROMK-mediated K+ currents were 1,005 pA, 1,590 pA and 1,570 pA in female mice. We conclude that the effect of HK intake on Kir4.1/Kir5.1 of the DCT and ROMK of DCT2/CNT is similar between male and female mice. Also, Cl- content in HK diets has no effect on HK-induced inhibition of Kir4.1/Kir5.1 of the DCT and HK-induced stimulation of ROMK in DCT2/CNT.

7.
Curr Opin Nephrol Hypertens ; 31(5): 479-485, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35894283

RESUMEN

PURPOSE OF REVIEW: Kir5.1 interacts with Kir4.2 in proximal tubule and with Kir4.1 in distal convoluted tubule (DCT), connecting tubule (CNT) and cortical collecting duct (CCD) to form basolateral-K+-channels. Kir4.2/Kir5.1 and Kir4.1/Kir5.1 play an important role in regulating Na+/HCO3--transport of the proximal tubule and Na+/K+ -transport in the DCT/CNT/CCD. The main focus of this review is to provide an overview of the recent development in the field regarding the role of Kir5.1 regulating renal electrolyte transport in the proximal tubule and DCT. RECENT FINDINGS: Loss-of-function-mutations of KCNJ16 cause a new form of tubulopathy, characterized by hypokalaemia, Na+-wasting, acid-base-imbalance and metabolic-acidosis. Abnormal bicarbonate transport induced by loss-of-function of KCNJ16-mutants is recapitulated in Kir4.2-knockout-(Kir4.2 KO) mice. Deletion of Kir5.1 also abolishes the effect of dietary Na+ and K+-intakes on the basolateral membrane voltage and NCC expression/activity. Long-term high-salt intake or high-K+-intake causes hyperkalaemic in Kir5.1-deficient mice. SUMMARY: Kir4.2/Kir5.1 activity in the proximal tubule plays a key role in regulating Na+, K+ and bicarbonate-transport through regulating electrogenic-Na+-bicarbonate-cotransporter-(NBCe1) and type 3-Na+/H+-exchanger-(NHE3). Kir4.1/Kir5.1 activity of the DCT plays a critical role in mediating the effect of dietary-K+ and Na+-intakes on NCC activity/expression. As NCC determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), defective regulation of NCC during high-salt and high-K+ compromises renal K+ excretion and K+ homeostasis.


Asunto(s)
Canales de Potasio de Rectificación Interna , Animales , Bicarbonatos/metabolismo , Humanos , Transporte Iónico/fisiología , Túbulos Renales/metabolismo , Túbulos Renales Distales/metabolismo , Ratones , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Sodio/metabolismo
8.
Hypertension ; 79(7): 1423-1434, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35506380

RESUMEN

BACKGROUND: MR (mineralocorticoid receptor) antagonists are recommended for patients with resistant hypertension even when circulating aldosterone levels are not high. Although aldosterone activates MR to increase epithelial sodium channel (ENaC) activity, glucocorticoids also activate MR but are metabolized by 11ßHSD2 (11ß-hydroxysteroid dehydrogenase type 2). 11ßHSD2 is expressed at increasing levels from distal convoluted tubule (DCT) through collecting duct. Here, we hypothesized that MR maintains ENaC activity in the DCT2 and early connecting tubule in the absence of aldosterone. METHODS: We studied AS (aldosterone synthase)-deficient (AS-/-) mice, which were backcrossed onto the same C57BL6/J strain as kidney-specific MR knockout (KS-MR-/-) mice. KS-MR-/- mice were used to compare MR expression and ENaC localization and cleavage with AS-/- mice. RESULTS: MR was highly expressed along DCT2 through the cortical collecting duct (CCD), whereas no 11ßHSD2 expression was observed along DCT2. MR signal and apical ENaC localization were clearly reduced along both DCT2 and CCD in KS-MR-/- mice but were fully preserved along DCT2 and were partially reduced along CCD in AS-/- mice. Apical ENaC localization and ENaC currents were fully preserved along DCT2 in AS-/- mice and were not increased along CCD after low salt. AS-/- mice exhibited transient Na+ wasting under low-salt diet, but administration of the MR antagonist eplerenone to AS-/- mice led to hyperkalemia and decreased body weight with higher Na+ excretion, mimicking the phenotype of MR-/- mice. CONCLUSIONS: Our results provide evidence that MR is activated in the absence of aldosterone along DCT2 and partially CCD, suggesting glucocorticoid binding to MR preserves sodium homeostasis along DCT2 in AS-/- mice.


Asunto(s)
Aldosterona , Túbulos Renales Colectores , Aldosterona/metabolismo , Aldosterona/farmacología , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Humanos , Túbulos Renales Colectores/metabolismo , Túbulos Renales Distales/metabolismo , Ratones , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Natriuresis , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Sodio/metabolismo
9.
Am J Physiol Renal Physiol ; 322(1): F55-F67, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843409

RESUMEN

We used whole cell recording to examine the renal outer medullary K+ channel (ROMK or Kir1.1) and epithelial Na+ channel (ENaC) in the late distal convoluted tubule (DCT2)/initial connecting tubule (iCNT) and in the cortical collecting duct (CCD) of kidney tubule-specific neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2) knockout mice (Ks-Nedd4-2 KO) and floxed neural precursor cell-expressed developmentally downregulated 4-like (Nedd4l) mice (control). Tertiapin Q (TPNQ)-sensitive K+ currents (ROMK) were smaller in both the DCT2/iCNT and CCD of Ks-Nedd4-2 KO mice on a normal diet than in control mice. Neither high dietary salt intake nor low dietary salt intake had a significant effect on ROMK activity in the DCT2/iCNT and CCD of control and Ks-Nedd4-2 KO mice. In contrast, high dietary K+ intake (HK) increased, whereas low dietary K+ intake (LK) decreased TPNQ-sensitive K+ currents in floxed Nedd4l mice. However, the effects of dietary K+ intake on ROMK channel activity were absent in Ks-Nedd4-2 KO mice since neither HK nor LK significantly affected TPNQ-sensitive K+ currents in the DCT2/iCNT and CCD. Moreover, TPNQ-sensitive K+ currents in the DCT2/iCNT and CCD of Ks-Nedd4-2 KO mice on HK were similar to those of control mice on LK. Amiloride-sensitive Na+ currents in the DCT2/iCNT and CCD were significantly higher in Ks-Nedd4-2 KO mice than in floxed Nedd4l mice on a normal K+ diet. HK increased ENaC activity of the DCT2/iCNT only in control mice, but HK stimulated ENaC of the CCD in both control and Ks-Nedd4-2 KO mice. Moreover, the HK-induced increase in amiloride-sensitive Na+ currents was larger in Ks-Nedd4-2 KO mice than in control mice. Deletion of Nedd4-2 increased with no lysine kinase 1 expression and abolished HK-induced inhibition of with no lysine kinase 1. We conclude that deletion of Nedd4-2 increases ENaC activity but decreases ROMK activity in the aldosterone-sensitive distal nephron and that HK fails to stimulate ROMK, but robustly increases ENaC activity in the CCD of Nedd4-2-deficient mice.NEW & NOTEWORTHY We demonstrate that renal outer medullary K+ (ROMK) channel activity is inhibited in the late distal convoluted tubule/initial connecting tubule and cortical collecting duct of neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2)-deficient mice. Also, deletion of Nedd4-2 abolishes the stimulatory effect of dietary K+ intake on ROMK. The lack of high K+-induced stimulation of ROMK is associated with the absence of high K+-induced inhibition of with no lysine kinase 1.


Asunto(s)
Aldosterona/farmacología , Túbulos Renales Distales/efectos de los fármacos , Ubiquitina-Proteína Ligasas Nedd4/deficiencia , Canales de Potasio de Rectificación Interna/metabolismo , Potasio en la Dieta/metabolismo , Animales , Dieta Hiposódica , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Distales/metabolismo , Masculino , Potenciales de la Membrana , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4/genética , Cloruro de Sodio Dietético/metabolismo
10.
Am J Physiol Renal Physiol ; 321(1): F1-F11, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34029145

RESUMEN

High-dietary K+ (HK) intake inhibits basolateral Kir4.1/Kir5.1 activity in the distal convoluted tubule (DCT), and HK-induced inhibition of Kir4.1/Kir5.1 is essential for HK-induced inhibition of NaCl cotransporter (NCC). Here, we examined whether neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) deletion compromises the effect of HK on basolateral Kir4.1/Kir5.1 and NCC in the DCT. Single-channel recording and whole cell recording showed that neither HK decreased nor low-dietary K+ (LK) increased basolateral Kir4.1/Kir5.1 activity of the DCT in kidney tubule-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. In contrast, HK inhibited and LK increased Kir4.1/Kir5.1 activity in control mice [neural precursor cell expressed developmentally downregulated 4-like (Nedd4l)flox/flox]. Also, HK intake decreased the negativity of K+ current reversal potential in the DCT (depolarization) only in control mice but not in Ks-Nedd4-2 KO mice. Renal clearance experiments showed that HK intake decreased, whereas LK intake increased, hydrochlorothiazide-induced renal Na+ excretion only in control mice, but this effect was absent in Ks-Nedd4-2 KO mice. Western blot analysis also demonstrated that HK-induced inhibition of phosphorylated NCC (Thr53) and total NCC was observed only in control mice but not in Ks-Nedd4-2 KO mice. Furthermore, expression of all three subunits of the epithelial Na+ channel in Ks-Nedd4-2 KO mice on HK was higher than in control mice. Thus, plasma K+ concentrations were similar between Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HK for 7 days despite high NCC expression. We conclude that Nedd4-2 plays a role in regulating HK-induced inhibition of Kir4.1/Kir5.1 and NCC in the DCT.NEW & NOTEWORTHY Basolateral Kir4.1/Kir5.1 in the distal convoluted tubule plays an important role as a "K+ sensor" in the regulation of renal K+ excretion after high K+ intake. We found that neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) a role in mediating the effect of K+ diet on Kir4.1/Kir5.1 and NaCl cotransporter because high K+ intake failed to inhibit basolateral Kir4.1/Kir5.1 and NaCl cotransporter in kidney tubule-specific Nedd4-2 knockout mice.


Asunto(s)
Túbulos Renales Distales/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/deficiencia , Canales de Potasio de Rectificación Interna/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Transporte Biológico/fisiología , Transporte Iónico/fisiología , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp/métodos , Canales de Potasio de Rectificación Interna/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/genética
11.
Am J Physiol Renal Physiol ; 320(6): F1045-F1058, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33900854

RESUMEN

High sodium (HS) intake inhibited epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron and Na+-Cl- cotransporter (NCC) by suppressing basolateral Kir4.1/Kir5.1 in the distal convoluted tubule (DCT), thereby increasing renal Na+ excretion but not affecting K+ excretion. The aim of the present study was to explore whether deletion of Kir5.1 compromises the inhibitory effect of HS on NCC expression/activity and renal K+ excretion. Patch-clamp experiments demonstrated that HS failed to inhibit DCT basolateral K+ channels and did not depolarize K+ current reversal potential of the DCT in Kir5.1 knockout (KO) mice. Moreover, deletion of Kir5.1 not only increased the expression of Kir4.1, phospho-NCC, and total NCC but also abolished the inhibitory effect of HS on the expression of Kir4.1, phospho-NCC, and total NCC and thiazide-induced natriuresis. Also, low sodium-induced stimulation of NCC expression/activity and basolateral K+ channels in the DCT were absent in Kir5.1 KO mice. Deletion of Kir5.1 decreased ENaC currents in the late DCT, and HS further inhibited ENaC activity in Kir5.1 KO mice. Finally, measurement of the basal renal K+ excretion rate with the modified renal clearance method demonstrated that long-term HS inhibited the renal K+ excretion rate and steadily increased plasma K+ levels in Kir5.1 KO mice but not in wild-type mice. We conclude that Kir5.1 plays an important role in mediating the effect of HS intake on basolateral K+ channels in the DCT and NCC activity/expression. Kir5.1 is involved in maintaining renal ability of K+ excretion during HS intake. NEW & NOTEWORTHY Kir5.1 plays an important role in mediating the effect of high sodium intake on basolateral K+ channels in the distal convoluted tubule and Na+-Cl- cotransporter activity/expression.


Asunto(s)
Canales de Potasio de Rectificación Interna/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Sodio en la Dieta/administración & dosificación , Sodio en la Dieta/farmacología , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Túbulos Renales Distales/efectos de los fármacos , Túbulos Renales Distales/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Simportadores del Cloruro de Sodio/genética
12.
Am J Physiol Renal Physiol ; 320(5): F883-F896, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33818128

RESUMEN

Neural precursor cell expressed developmentally downregulated protein 4-2 (Nedd4-2) regulates the expression of Kir4.1, thiazide-sensitive NaCl cotransporter (NCC), and epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN), and Nedd4-2 deletion causes salt-sensitive hypertension. We now examined whether Nedd4-2 deletion compromises the effect of high-salt (HS) diet on Kir4.1, NCC, ENaC, and renal K+ excretion. Immunoblot analysis showed that HS diet decreased the expression of Kir4.1, Ca2+-activated large-conductance K+ channel subunit-α (BKα), ENaCß, ENaCγ, total NCC, and phospho-NCC (at Thr53) in floxed neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4lfl/fl) mice, whereas these effects were absent in kidney-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. Renal clearance experiments also demonstrated that Nedd4-2 deletion abolished the inhibitory effect of HS diet on hydrochlorothiazide-induced natriuresis. Patch-clamp experiments showed that neither HS diet nor low-salt diet had an effect on Kir4.1/Kir5.1 currents of the distal convoluted tubule in Nedd4-2-deficient mice, whereas we confirmed that HS diet inhibited and low-salt diet increased Kir4.1/Kir5.1 activity in Nedd4lflox/flox mice. Nedd4-2 deletion increased ENaC currents in the ASDN, and this increase was more robust in the cortical collecting duct than in the distal convoluted tubule. Also, HS-induced inhibition of ENaC currents in the ASDN was absent in Nedd4-2-deficient mice. Renal clearance experiments showed that HS intake for 2 wk increased the basal level of renal K+ excretion and caused hypokalemia in Ks-Nedd4-2-KO mice but not in Nedd4lflox/flox mice. In contrast, plasma Na+ concentrations were similar in Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HS diet. We conclude that Nedd4-2 plays an important role in mediating the inhibitory effect of HS diet on Kir4.1, ENaC, and NCC and is essential for maintaining normal renal K+ excretion and plasma K+ ranges during long-term HS diet.NEW & NOTEWORTHY The present study suggests that Nedd4-2 is involved in mediating the inhibitory effect of high salt (HS) diet on Kir4.1/kir5.1 in the distal convoluted tubule, NaCl cotransporter function, and epithelial Na+ channel activity and that Nedd4-2 plays an essential role in maintaining K+ homeostasis in response to a long-term HS diet. This suggests the possibility that HS intake could lead to hypokalemia in subjects lacking proper Nedd4-2 E3 ubiquitin ligase activity in aldosterone-sensitive distal nephron.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Hipopotasemia/etiología , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Sodio en la Dieta/efectos adversos , Animales , Antibacterianos/farmacología , Transporte Biológico , Doxiciclina/farmacología , Canales Epiteliales de Sodio/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hipopotasemia/inducido químicamente , Hipopotasemia/genética , Transporte Iónico/fisiología , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4/genética , Nefronas/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Sodio/metabolismo , Sodio en la Dieta/administración & dosificación , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
13.
Am J Physiol Renal Physiol ; 318(6): F1369-F1376, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32308018

RESUMEN

Cytochrome P-450 (Cyp) epoxygenase-dependent metabolites of arachidonic acid (AA) have been shown to inhibit renal Na+ transport, and inhibition of Cyp-epoxygenase is associated with salt-sensitive hypertension. We used the patch-clamp technique to examine whether Cyp-epoxygenase-dependent AA metabolites inhibited the basolateral 40-pS K+ channel (Kir4.1/Kir5.1) in the distal convoluted tubule (DCT). Application of AA inhibited the basolateral 40-pS K+ channel in the DCT. The inhibitory effect of AA on the 40-pS K+ channel was specific because neither linoleic nor oleic acid was able to mimic the effect of AA on the K+ channel. Inhibition of Cyp-monooxygenase with N-methylsulfonyl-12,12-dibromododec-11-enamide or inhibition of cyclooxygenase with indomethacin failed to abolish the inhibitory effect of AA on the 40-pS K+ channel. However, the inhibition of Cyp-epoxygenase with N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide abolished the effect of AA on the 40-pS K+ channel in the DCT. Moreover, addition of either 11,12-epoxyeicosatrienoic acid (EET) or 14,15-EET also inhibited the 40-pS K+ channel in the DCT. Whole cell recording demonstrated that application of AA decreased, whereas N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide treatment increased, Ba2+-sensitive K+ currents in the DCT. Finally, application of 14,15-EET but not AA was able to inhibit the basolateral 40-pS K+ channel in the DCT of Cyp2c44-/- mice. We conclude that Cyp-epoxygenase-dependent AA metabolites inhibit the basolateral Kir4.1/Kir5.1 in the DCT and that Cyp2c44-epoxygenase plays a role in the regulation of the basolateral K+ channel in the mouse DCT.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido Araquidónico/farmacología , Familia 2 del Citocromo P450/metabolismo , Túbulos Renales Distales/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacología , Amidas/farmacología , Animales , Ácido Araquidónico/metabolismo , Familia 2 del Citocromo P450/antagonistas & inhibidores , Familia 2 del Citocromo P450/genética , Inhibidores Enzimáticos/farmacología , Túbulos Renales Distales/metabolismo , Masculino , Potenciales de la Membrana , Ratones de la Cepa 129 , Ratones Noqueados , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo
14.
J Am Soc Nephrol ; 31(6): 1226-1242, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32295826

RESUMEN

BACKGROUND: The potassium channel Kir4.1 forms the Kir4.1/Kir5.1 heterotetramer in the basolateral membrane of the distal convoluted tubule (DCT) and plays an important role in the regulation of the thiazide-sensitive NaCl cotransporter (NCC). Kidney-specific deletion of the ubiquitin ligase Nedd4-2 increases expression of NCC, and coexpression of Nedd4-2 inhibits Kir4.1/Kir5.1 in vitro. Whether Nedd4-2 regulates NCC expression in part by regulating Kir4.1/Kir5.1 channel activity in the DCT is unknown. METHODS: We used electrophysiology studies, immunoblotting, immunostaining, and renal clearance to examine Kir4.1/Kir5.1 activity in the DCT and NCC expression/activity in wild-type mice and mice with kidney-specific knockout of Nedd4-2, Kir4.1, or both. RESULTS: Deletion of Nedd4-2 increased the activity/expression of Kir4.1 in the DCT and also, hyperpolarized the DCT membrane. Expression of phosphorylated NCC/total NCC and thiazide-induced natriuresis were significantly increased in the Nedd4-2 knockout mice, but these mice were normokalemic. Double-knockout mice lacking both Kir4.1/Kir5.1 and Nedd4-2 in the kidney exhibited increased expression of the epithelial sodium channel α-subunit, largely abolished basolateral potassium ion conductance (to a degree similar to that of kidney-specific Kir4.1 knockout mice), and depolarization of the DCT membrane. Compared with wild-type mice, the double-knockout mice displayed inhibited expression of phosphorylated NCC and total NCC and had significantly blunted thiazide-induced natriuresis as well as renal potassium wasting and hypokalemia. However, NCC expression/activity was higher in the double-knockout mice than in Kir4.1 knockout mice. CONCLUSIONS: Nedd4-2 regulates Kir4.1/Kir5.1 expression/activity in the DCT and modulates NCC expression by Kir4.1-dependent and Kir4.1-independent mechanisms. Basolateral Kir4.1/Kir5.1 activity in the DCT partially accounts for the stimulation of NCC activity/expression induced by deletion of Nedd4-2.


Asunto(s)
Túbulos Renales Distales/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Simportadores del Cloruro de Sodio/fisiología , Tiazidas/farmacología , Animales , Canales Epiteliales de Sodio/fisiología , Ratones , Ratones Noqueados
15.
J Am Heart Assoc ; 9(7): e014996, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32208832

RESUMEN

Background Angiotensin II stimulates epithelial Na+ channel (ENaC) by aldosterone-independent mechanism. We now test the effect of angiotensin II on ENaC in the distal convoluted tubule (DCT) and cortical collecting duct (CCD) of wild-type (WT) and kidney-specific mineralocorticoid receptor knockout mice (KS-MR-KO). Methods and Results We used electrophysiological, immunoblotting and renal-clearance methods to examine the effect of angiotensin II on ENaC in KS-MR-KO and wild-type mice. High K+ intake stimulated ENaC in the late DCT/early connecting tubule (DCT2/CNT) and in the CCD whereas low sodium intake stimulated ENaC in the CCD but not in the DCT2/CNT. The deletion of MR abolished the stimulatory effect of high K+ and low sodium intake on ENaC, partially inhibited ENaC in DCT2/CNT but almost abolished ENaC activity in the CCD. Application of losartan inhibited ENaC only in DCT2/CNT of both wild-type and KS-MR-KO mice but not in the CCD. Angiotensin II infusion for 3 days has a larger stimulatory effect on ENaC in the DCT2/CNT than in the CCD. Three lines of evidence indicate that angiotensin II can stimulate ENaC by MR-independent mechanism: (1) angiotensin II perfusion augmented ENaC expression in KS-MR-KO mice; (2) angiotensin II stimulated ENaC in the DCT2/CNT but to a lesser degree in the CCD in KS-MR-KO mice; (3) angiotensin II infusion augmented benzamil-induced natriuresis, increased the renal K+ excretion and corrected hyperkalemia of KS-MR-KO mice. Conclusions Angiotensin II-induced stimulation of ENaC occurs mainly in the DCT2/CNT and to a lesser degree in the CCD and MR plays a dominant role in determining ENaC activity in the CCD but to a lesser degree in the DCT2/CNT.


Asunto(s)
Angiotensina II/farmacología , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Distales/efectos de los fármacos , Receptor de Angiotensina Tipo 1/agonistas , Receptores de Mineralocorticoides/deficiencia , Animales , Hiperpotasemia/tratamiento farmacológico , Hiperpotasemia/genética , Hiperpotasemia/metabolismo , Hiperpotasemia/fisiopatología , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/fisiopatología , Túbulos Renales Distales/metabolismo , Túbulos Renales Distales/fisiopatología , Potenciales de la Membrana , Ratones Noqueados , Natriuresis/efectos de los fármacos , Potasio/orina , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Mineralocorticoides/genética , Eliminación Renal/efectos de los fármacos
16.
Hypertension ; 73(1): 112-120, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30571558

RESUMEN

The stimulation of ß-adrenergic receptor increases thiazide-sensitive NaCl cotransporter (NCC), an effect contributing to salt-sensitive hypertension by sympathetic stimulation. We now test whether the stimulation of ß-adrenergic receptor-induced activation of NCC is achieved through activating basolateral Kir4.1 in the distal convoluted tubule (DCT). Application of norepinephrine increased the basolateral 40 pS K+ channel (Kir4.1/Kir5.1 heterotetramer) in the DCT. The stimulatory effect of norepinephrine on the K+ channel was mimicked by cAMP analogue but abolished by inhibiting PKA (protein kinase A). Also, the effect of norepinephrine on the K+ channel in the DCT was recapitulated by isoproterenol but not by α-adrenergic agonist and blocked by propranolol, suggesting that norepinephrine effect on the K+ channel was mediated by ß-adrenergic receptor. The whole-cell recording shows that norepinephrine and isoproterenol increased DCT K+ currents and shifted the K+ current ( IK) reversal potential to negative range (hyperpolarization). Continuous norepinephrine perfusion (7 days) increased DCT K+ currents, hyperpolarized IK reversal potential, and increased the expression of total NCC/phosphorylated NCC, but it had no significant effect on the expression of NKCC2 (type 2 Na-Cl-K cotransporter) and ENaC-α (epithelial Na channel-α subunit). Renal clearance study demonstrated that norepinephrine perfusion augmented thiazide-induced urinary Na+ excretion only in wild-type but not in kidney-specific Kir4.1 knockout mice, suggesting that Kir4.1 is required for mediating the effect of norepinephrine on NCC. However, norepinephrine perfusion did not affect urinary K+ excretion. We conclude that the stimulation of ß-adrenergic receptor activates the basolateral Kir4.1 in the DCT and that the activation of Kir4.1 is required for norepinephrine-induced stimulation of NCC.


Asunto(s)
Transporte Iónico , Isoproterenol/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Propranolol/farmacología , Receptores Adrenérgicos beta/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Túbulos Renales Distales/efectos de los fármacos , Túbulos Renales Distales/metabolismo , Ratones , Ratones Noqueados , Norepinefrina/metabolismo , Canal Kir5.1
17.
Hypertension ; 72(2): 361-369, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29915013

RESUMEN

Stimulation of BK2R (bradykinin [BK] B2 receptor) has been shown to increase renal Na+ excretion. The aim of the present study is to explore the role of BK2R in regulating Kir4.1 and NCC (NaCl cotransporter) in the distal convoluted tubule (DCT). Immunohistochemical studies demonstrated that BK2R was highly expressed in both apical and lateral membrane of Kir4.1-positive tubules, such as DCT. Patch-clamp experiments demonstrated that BK inhibited the basolateral 40-pS K+ channel (a Kir4.1/5.1 heterotetramer) in the DCT, and this effect was blocked by BK2R antagonist but not by BK1R (BK B1 receptor) antagonist. Whole-cell recordings also demonstrated that BK decreased the basolateral K+ conductance of the DCT and depolarized the membrane. Renal clearance experiments showed that BK increased urinary Na+ and K+ excretion. However, the BK-induced natriuretic effect was completely abolished in KS-Kir4.1 KO (kidney-specific conditional Kir4.1 knockout) mice, suggesting that Kir4.1 activity is required for BK-induced natriuresis. The continuous infusion of BK with osmotic pump for 3 days decreased the basolateral K+ conductance and the negativity of the DCT membrane. Western blot showed that infusion of BK decreased the expression of total NCC and phosphorylated NCC. Renal clearance experiments demonstrated that thiazide-induced natriuresis was blunted in the mice receiving BK infusion, suggesting that BK inhibited NCC function. Consequently, mice receiving BK infusion for 3 days were hypokalemic. We conclude that stimulation of BK2R inhibits NCC activity, increases urinary K+ excretion, and causes mice hypokalemia and that Kir4.1 is required for BK2R-mediated stimulation of urinary Na+ and K+ excretion.


Asunto(s)
Bradiquinina/farmacología , Túbulos Renales Distales/metabolismo , Natriuresis/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Sodio/orina , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Femenino , Inmunohistoquímica , Transporte Iónico , Túbulos Renales Distales/efectos de los fármacos , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Técnicas de Placa-Clamp
18.
Hypertension ; 71(4): 622-630, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483225

RESUMEN

AT2R (AngII [angiotensin II] type 2 receptor) is expressed in the distal nephrons. The aim of the present study is to examine whether AT2R regulates NCC (Na-Cl cotransporter) and Kir4.1 of the distal convoluted tubule. AngII inhibited the basolateral 40 pS K channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule treated with losartan but not with PD123319. AT2R agonist also inhibits the K channel, indicating that AT2R was involved in tonic regulation of Kir4.1. The infusion of PD123319 stimulated the expression of tNCC (total NCC) and pNCC (phosphorylated NCC; Thr53) by a time-dependent way with the peak at 4 days. PD123319 treatment (4 days) stimulated the basolateral 40 pS K channel activity, augmented the basolateral K conductance, and increased the negativity of distal convoluted tubule membrane. The stimulation of Kir4.1 was essential for PD123319-induced increase in NCC because inhibiting AT2R increased the expression of tNCC and pNCC only in wild-type but not in the kidney-specific Kir4.1 knockout mice. Renal clearance study showed that thiazide-induced natriuretic effect was larger in PD123319-treated mice for 4 days than untreated mice. However, this effect was absent in kidney-specific Kir4.1 knockout mice which were also Na wasting under basal conditions. Finally, application of AT2R antagonist decreased the renal ability of K excretion and caused hyperkalemia in wild-type but not in kidney-specific Kir4.1 knockout mice. We conclude that AT2R-dependent regulation of NCC requires Kir4.1 in the distal convoluted tubule and that AT2R plays a role in stimulating K excretion by inhibiting Kir4.1 and NCC.


Asunto(s)
Imidazoles/farmacología , Túbulos Renales Distales , Losartán/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Piridinas/farmacología , Inhibidores de los Simportadores del Cloruro de Sodio/farmacología , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Angiotensina II/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales , Transporte Iónico/efectos de los fármacos , Túbulos Renales Distales/efectos de los fármacos , Túbulos Renales Distales/metabolismo , Ratones , Ratones Noqueados , Receptor de Angiotensina Tipo 2/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Desequilibrio Hidroelectrolítico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA