Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 4779-4801, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828196

RESUMEN

Background: Messenger RNA (mRNA)-based immunogene therapy holds significant promise as an emerging tumor therapy approach. However, the delivery efficiency of existing mRNA methods and their effectiveness in stimulating anti-tumor immune responses require further enhancement. Tumor cell lysates containing tumor-specific antigens and biomarkers can trigger a stronger immune response to tumors. In addition, strategies involving multiple gene therapies offer potential optimization paths for tumor gene treatments. Methods: Based on the previously developed ideal mRNA delivery system called DOTAP-mPEG-PCL (DMP), which was formed through the self-assembly of 1.2-dioleoyl-3-trimethylammonium-propane (DOTAP) and methoxypoly (ethylene glycol)-b-poly (ε-caprolactone) (mPEG-PCL), we introduced a fused cell-penetrating peptide (fCPP) into the framework and encapsulated tumor cell lysates to form a novel nanovector, termed CLSV system (CLS: CT26 tumor cell lysate, V: nanovector). This system served a dual purpose of facilitating the delivery of two mRNAs and enhancing tumor immunogene therapy through tumor cell lysates. Results: The synthesized CLSV system had an average size of 241.17 nm and a potential of 39.53 mV. The CLSV system could not only encapsulate tumor cell lysates, but also deliver two mRNAs to tumor cells simultaneously, with a transfection efficiency of up to 60%. The CLSV system effectively activated the immune system such as dendritic cells to mature and activate, leading to an anti-tumor immune response. By loading Bim-encoded mRNA and IL-23A-encoded mRNA, CLSV/Bim and CLSV/IL-23A complexes were formed, respectively, to further induce apoptosis and anti-tumor immunity. The prepared CLSV/dual-mRNA complex showed significant anti-cancer effects in multiple CT26 mouse models. Conclusion: Our results suggest that the prepared CLSV system is an ideal delivery system for dual-mRNA immunogene therapy.


Asunto(s)
Neoplasias del Colon , Terapia Genética , Inmunoterapia , Nanopartículas , ARN Mensajero , Animales , ARN Mensajero/genética , ARN Mensajero/administración & dosificación , Línea Celular Tumoral , Neoplasias del Colon/terapia , Neoplasias del Colon/genética , Terapia Genética/métodos , Inmunoterapia/métodos , Nanopartículas/química , Ratones , Ratones Endogámicos BALB C , Péptidos de Penetración Celular/química , Polietilenglicoles/química , Humanos , Poliésteres/química , Femenino , Compuestos de Amonio Cuaternario , Ácidos Grasos Monoinsaturados
2.
J Interferon Cytokine Res ; 44(4): 158-169, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38498032

RESUMEN

Interleukin 12 (IL-12) is a heterodimer consisting of 2 subunits, p35 and p40, with unique associations and interacting functions with its family members. IL-12 is one of the most important cytokines regulating the immune system response and is integral to adaptive immunity. IL-12 has shown marked therapeutic potential in a variety of tumor types. This review therefore summarizes the characteristics of IL-12 and its application in tumor treatment, focusing on its antitumor effects in colorectal cancer (CRC) and potential radiosensitization mechanisms. We aim to provide a current reference for IL-12 and other potential CRC treatment strategies.


Asunto(s)
Neoplasias Colorrectales , Interleucina-12 , Humanos , Neoplasias Colorrectales/terapia , Citocinas , Interleucina-12/inmunología , Interleucina-12/uso terapéutico , Subunidad p35 de la Interleucina-12 , Subunidad p40 de la Interleucina-12 , Interleucina-23
3.
ACS Appl Mater Interfaces ; 16(4): 4375-4394, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38185858

RESUMEN

RNA interference-based gene therapy has led to a strategy for spinal cord injury (SCI) therapy. However, there have been high requirements regarding the optimal gene delivery vector for siRNA-based SCI gene therapy. Here, we developed an injectable and photocurable lipid nanoparticle GelMA (PLNG) hydrogel scaffold for controlled dual siRNA delivery at the SCI wound site. The prepared PLNG scaffold could efficiently protect and retain the bioactivity of the siRNA nanocomplex. It facilitated sustainable siRNA release along with degradation in 7 days. After loading dual siRNA targeting phosphatase and tensin homologue (PTEN) and macrophage migration inhibitory factor (MIF) simultaneously, the locally administered siRNAs/PLNG scaffold efficiently improved the Basso mouse scale (BMS) score and recovered ankle joint movement and plantar stepping after treatment with only three doses. We further proved that the siRNAs/PLNG scaffold successfully regulated the activities of neurons, microglia, and macrophages, thus promoting neuron axon regeneration and remyelination. The protein array results suggested that the siRNAs/PLNG scaffold could increase the expression of growth factors and decrease the expression of inflammatory factors to regulate neuroinflammation in SCI and create a neural repair environment. Our results suggested that the PLNG scaffold siRNA delivery system is a potential candidate for siRNA-based SCI therapy.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Ratones , Animales , Regeneración Nerviosa , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/tratamiento farmacológico , Neuronas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico
4.
Mol Pharm ; 21(1): 267-282, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38079527

RESUMEN

Messenger ribonucleic acid (mRNA)-based gene therapy has great potential for cancer gene therapy. However, the effectiveness of mRNA in cancer therapy needs to be further improved, and the delivery efficiency and instability of mRNA limit the application of mRNA-based products. Both the delivery efficiency can be elevated by cell-penetrating peptide modification, and the immune response can be enhanced by tumor cell lysate stimulation, representing an advantageous strategy to expand the effectiveness of mRNA gene therapy. Therefore, it is vital to exploit a vector that can deliver high-efficiency mRNA with codelivery of tumor cell lysate to induce specific immune responses. We previously reported that DMP cationic nanoparticles, formed by the self-assembly of DOTAP and mPEG-PCL, can deliver different types of nucleic acids. DMP has been successfully applied in gene therapy research for various tumor types. Here, we encapsulated tumor cell lysates with DMP nanoparticles and then modified them with a fused cell-penetrating peptide (TAT-iRGD) to form an MLSV system. The MLSV system was loaded with encoded Bim mRNA, forming the MLSV/Bim complex. The average size of the synthesized MLSV was 191.4 nm, with a potential of 47.8 mV. The MLSV/mRNA complex promotes mRNA absorption through caveolin-mediated endocytosis, with a transfection rate of up to 68.6% in B16 cells. The MLSV system could also induce the maturation and activation of dendritic cells, obviously promoting the expression of CD80, CD86, and MHC-II both in vitro and in vivo. By loading the encoding Bim mRNA, the MLSV/Bim complex can inhibit cell proliferation and tumor growth, with inhibition rates of up to 87.3% in vitro. Similarly, the MLSV/Bim complex can inhibit tumor growth in vivo, with inhibition rates of up to 78.7% in the B16 subcutaneous tumor model and 63.3% in the B16 pulmonary metastatic tumor model. Our results suggest that the MLSV system is an advanced candidate for mRNA-based immunogene therapy.


Asunto(s)
Péptidos de Penetración Celular , Melanoma , Nanopartículas Multifuncionales , Nanopartículas , Humanos , Melanoma/genética , Melanoma/terapia , Transfección , Terapia Genética , Línea Celular Tumoral
5.
Int J Nanomedicine ; 18: 5961-5982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901359

RESUMEN

Introduction: Cell-membrane nanocarriers are usually constructed by modifying the nanoparticle surface with cell membrane extracts, which has a direct benefit in endowing targeting capacity to nanocarriers based on their original cell types. However, delivering nucleic acid cargos by cell membrane-based nanoparticles is difficult owing to the strong negative charge of the cell membrane fraction. In this study, we developed a cancer cell membrane-based drug delivery system, the cMDS, for efficient siRNA delivery. Meanwhile, the cancer-specific immune response stimulated by the gene vector itself could offer synergistic anti-cancer ability. Methods: The cMDS was prepared by ultrasound, and its transfection efficiency and anti-cancer ability were examined using cultures of CT26 cells. MTT and red blood cell hemolysis tests were performed to assess the safety of cMDS, while its targeted gene delivery and strong immune stimulation were investigated in a subcutaneous tumor model. Moreover, the detailed anti-cancer immune stimulation mechanisms of cMDS are uncovered by protein chip analysis. Results: The cMDS was spherical core-shell structure. It showed high transfection efficiency and anti-cancer ability in vitro. In animal experiments, intravenously administered cMDS/siStat3 complex efficiently suppress the growth of colon cancer. Moreover, the result of protein chip analysis suggested that cMDS affect the migration and chemotaxis of immune cells. Conclusion: The cMDS shows obvious tumor tissue-specific accumulation properties and strong immune stimulation ability. It is an advanced targeted gene delivery system with potent immunotherapeutic properties.


Asunto(s)
Neoplasias del Colon , Nanopartículas , Animales , ARN Interferente Pequeño , Transfección , Sistemas de Liberación de Medicamentos , Neoplasias del Colon/tratamiento farmacológico , Nanopartículas/química , Membrana Celular/metabolismo , Línea Celular Tumoral
6.
Front Pharmacol ; 14: 1177068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063276

RESUMEN

Leukemia is a malignancy initiated by uncontrolled proliferation of hematopoietic stem cell from the B and T lineages, resulting in destruction of hematopoietic system. The conventional leukemia treatments induce severe toxic and a long series of unwanted side-effects which are caused by lack of specificity of anti-leukemic drugs. Recently, nanotechnology have shown tremendous application and clinical impact with respect to diagnosis and treatment of leukemia. According to considerable researches in the context of finding new nanotechnological platform, iron oxide nanoparticles have been gained increasing attention for the leukemia patients use. In this review, a short introduction of leukemia is described followed by the evaluation of the current approaches of iron oxide nanoparticles applied in the leukemia detection and treatment. The enormous advantages of iron oxide nanoparticles for leukemia have been discussed, which consist of the detection of magnetic resonance imaging (MRI) as efficient contrast agents, magnetic biosensors and targeted delivery of anti-leukemia drugs by coating different targeting moieties. In addition, this paper will briefly describe the application of iron oxide nanoparticles in the combined treatment of leukemia. Finally, the shortcomings of the current applications of iron-based nanoparticles in leukemia diagnosis and treatment will be discussed in particular.

7.
MedComm (2020) ; 4(1): e187, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36654533

RESUMEN

Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.

8.
Int J Nanomedicine ; 18: 8059-8075, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164262

RESUMEN

Background: Messenger ribonucleic acid (mRNA)-based gene therapy has great potential in cancer treatment. However, the application of mRNA-based cancer treatment could be further developed. Elevated delivery ability and enhanced immune response are advantages for expanding the application of mRNA-based cancer therapy. It is crucial that the prepared carrier can cause an immune reaction based on the efficient delivery of mRNA. Methods: We reported DMP nanoparticle previously, which was obtained by the self-assembly of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and (ethylene glycol)-b-poly (ε-caprolactone) (mPEG-PCL). Research demonstrated that DMP can deliver mRNA, siRNA, and plasmid. And it is applied to various tumor types. In our work, the tumor cell lysate was introduced to the internal DMP chain, fusing cell-penetrating peptides (CPPs) modification on the surface forming the CLSV system. And then mixed encoded IL-22BP (interleukin-22 binding protein) mRNA and CLSV to form CLSV/IL-22BP complex. Results: The size of the CLSV system was 213.2 nm, and the potential was 45.7 mV. The transfection efficiency of the CLSV system is up to 76.45% in C26 cells via the micropinocytosis pathway. The CLSV system also could induce an immune response and significantly elevate the expression of CD80, CD86, and MHC-II in vivo. Then, by binding with IL-22BP (Interleukin-22 binding protein) mRNA, the CLSV/IL-22BP complex inhibited tumor cell growth, with an inhibition rate of up to 82.3% in vitro. The CLSV/IL-22BP complex also inhibited tumor growth in vivo, the tumor cell growth inhibition up to 75.0% in the subcutaneous tumor model, and 84.9% in the abdominal cavity metastasis tumor model. Conclusion: Our work demonstrates that the CLSV system represents a potent potential for mRNA delivery.


Asunto(s)
Neoplasias del Colon , Nanopartículas , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/terapia , Transfección , Terapia Genética , ARN Mensajero/genética
9.
Signal Transduct Target Ther ; 7(1): 387, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36464706

RESUMEN

The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Humanos , SARS-CoV-2 , Reposicionamiento de Medicamentos , Terapia Combinada
10.
Int J Nanomedicine ; 17: 2925-2941, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814613

RESUMEN

Purpose: Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, with more than 300,000 new cases annually. Despite advances in existing treatments, including surgery, radiation, chemotherapy, and immunotherapy, the overall survival and prognosis have remained poor. However, gene therapy based on non-viral vectors provides new ideas for the treatment of OSCC. Here, we aimed to prepare and describe the synthesis, biosafety, and preclinical efficacy of DOTAP-mPEG-PCL (DMP) in OSCC gene therapy. Methods: We prepared a nano-sized hybrid cationic micelle DMP. DMP micelles were prepared by self-assembling cationic lipid DOTAP and mPEG-PCL polymer. We evaluated the characteristics of this cationic micelle in vitro. Combined with encoding the apoptosis-inducing BimS gene, we established the DMP/phBimS complex and evaluated its anti-tumor effect in vitro. We also established a mouse tongue xenograft model to evaluate the antitumor effect of the DMP/phBimS complex in vivo through local and systemic administration prospectively. Results: The DMP cationic micelle is spherical in shape, with an average diameter of 28.32 ± 3.56 nm and an average zeta potential of 43.43 ± 0.82 mV. By activation of lipid raft-mediated endocytosis caveolin-mediated endocytosis, DMP could efficiently deliver plasmid into SCC15 cells (efficiency: 52.07% ± 1.63%), with an ideal biosecurity. When loaded by plasmid encoding the apoptosis-inducing BimS gene, the DMP/phBimS complex exhibited an obvious anti-proliferation effect of SCC15 in vitro through the apoptosis pathway (33.9% ± 2.62% apoptosis rate). By local administration, the DMP/phBimS complex showed ideal anti-tumor properties in the nude mouse tongue xenograft model, with an average tumor inhibition rate of 65.66%. Furthermore, through systematic administration, the DMP/phBimS complex obviously inhibited OSCC growth, with an average inhibition rate of 45.63% (DMP/phBimS) and an appropriate biocompatibility. Conclusion: The DMP/phBimS complex is an optional effective option for suicide gene therapy for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Apoptosis , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/terapia , Cationes/farmacología , Línea Celular Tumoral , Proliferación Celular , Humanos , Inmunoterapia , Ratones , Micelas , Neoplasias de la Boca/genética , Neoplasias de la Boca/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello
12.
Int J Nanomedicine ; 17: 2041-2067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571258

RESUMEN

Cancer is the second leading cause of death in the world, behind only cardiovascular diseases, and is one of the most serious diseases threatening human health nowadays. Cancer patients' lives are being extended by the use of contemporary medical technologies, such as surgery, radiotherapy, and chemotherapy. However, these treatments are not always effective in extending cancer patients' lives. Simultaneously, these approaches are often accompanied with a series of negative consequences, such as the occurrence of adverse effects and an increased risk of relapse. As a result, the development of a novel cancer-eradication strategy is still required. The emergence of nanomedicine as a promising technology brings a new avenue for the circumvention of limitations of conventional cancer therapies. Gold nanoparticles (AuNPs), in particular, have garnered extensive attention due to their many specific advantages, including customizable size and shape, multiple and useful physicochemical properties, and ease of functionalization. Based on these characteristics, many therapeutic and diagnostic applications of AuNPs have been exploited, particularly for malignant tumors, such as drug and nucleic acid delivery, photodynamic therapy, photothermal therapy, and X-ray-based computed tomography imaging. To leverage the potential of AuNPs, these applications demand a comprehensive and in-depth overview. As a result, we discussed current achievements in AuNPs in anticancer applications in a more methodical manner in this review. Also addressed in depth are the present status of clinical trials, as well as the difficulties that may be encountered when translating some basic findings into the clinic, in order to serve as a reference for future studies.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Fotoquimioterapia , Oro/química , Oro/uso terapéutico , Humanos , Nanopartículas del Metal/química , Nanomedicina/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Fotoquimioterapia/métodos
13.
J Control Release ; 344: 97-112, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189260

RESUMEN

Drug-controlled release is recognized as effective for improving compliance with treatment and obtaining better therapeutic efficacy with less toxicity in cancer treatment. However, few reports in this area are involved in nucleic acids delivery, especially in RNA therapeutics delivery. In this study, an injectable hydrogel Methacrylated gelatin (GM) scaffold was introduced into a dual-RNA hybrid delivery complex hybrid lipid particle (HLP) to form a G-HLP/RNAs system. This system can control the release of both siRNA and mRNA and was found to be efficient for protecting these RNAs from biodegradation and retaining their therapeutic effect over 7 days. Further, a tumor environment (TME)-activation function after peritumoral injection of mocked GM scaffold was observed. Then, matured DC cells and activated T-cells were detected by the addition of HLP/RNAs complex, thus verifying the immunoactivation function of GM scaffold and its ability to reserve immune cells and antigens. Finally, two doses of G-HLP/RNAs treatment efficiently suppressed C26 tumor growth in mice with a tumor weight inhibition rate of 71.9%. Owing to its ability to achieve RNA drug-controlled release, alter TME, and induce tumor apoptosis, the G-HLP/RNAs system may become a valuable tool for cancer gene therapy.


Asunto(s)
Neoplasias , Animales , Apoptosis , Liberación de Fármacos , Hidrogeles , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Interferente Pequeño/uso terapéutico
14.
Pharmaceutics ; 14(1)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35057057

RESUMEN

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases worldwide, causing severe cartilage damage and disability. Despite the recent progress made in RA treatment, limitations remain in achieving early and efficient therapeutic intervention. Advanced therapeutic strategies are in high demand, and siRNA-based therapeutic technology with a gene-silencing ability represents a new approach for RA treatment. In this study, we created a cationic delivery micelle consisting of low-molecular-weight (LMW) polyethylenimine (PEI)-cholesterol-polyethylene glycol (PEG) (LPCE) for small interfering RNA (siRNA)-based RA gene therapy. The carrier is based on LMW PEI and modified with cholesterol and PEG. With these two modifications, the LPCE micelle becomes multifunctional, and it efficiently delivered siRNA to macrophages with a high efficiency greater than 70%. The synthesized LPCE exhibits strong siRNA protection ability and high safety. By delivering nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 siRNA, the p65 siRNA/LPCE complex efficiently inhibited macrophage-based cytokine release in vitro. Local administration of the p65 siRNA/LPCE complex exhibited a fast and potent anti-inflammatory effect against RA in a mouse model. According to the results of this study, the functionalized LPCE micelle that we prepared has potential gene therapeutic implications for RA.

15.
Int J Nanomedicine ; 16: 5211-5232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366664

RESUMEN

BACKGROUND: Gene therapy has emerged as a new strategy for cancer therapy. As an alternative nucleic acid material, messenger ribonucleic acid (mRNA) is being increasingly utilized in cancer gene therapy. However, unfulfilled requirements and a lack of ideal mRNA delivery vectors persist. METHODS: We developed an advanced mRNA delivery system, DMP-039, by fusing a cell-penetrating peptide, cRGD-R9, and a cationic nano-sized DMP backbone together. The DMP gene vector backbone was synthesized by the self-assembly of DOTAP lipid and mPEG-PCL polymer. Introduction of the cRGD-R9 peptide onto the DMP backbone was performed to elevate the mRNA delivery capacity, which resulted in a peptide-functionalized hybrid delivery system. RESULTS: The average size of the synthesized DMP-039 was 268.9 ± 12.4 nm (PDI = 0.382), with a potential of 17.4 ± 0.5 mV. The synthesized DMP-039 hybrid nanoparticles exhibited high mRNA delivery efficiency through multiple mechanisms during transmembrane transportation. By loading the encoding mRNA from the suicide gene Bim, a locally administered mBim/DMP-039 complex strongly inhibited growth in two colon cancer models. Moreover, intravenous administration of the mBim/DMP-039 complex efficiently suppressed C26 pulmonary metastatic tumor progression with high safety. The in vivo distribution, degradation, and excretion were also investigated in detail. CONCLUSION: Our results suggest that the DMP-039 peptide-functionalized hybrid nanoparticle is an advanced candidate for mRNA-based suicide gene therapy.


Asunto(s)
Neoplasias del Colon , Nanopartículas , Animales , Línea Celular Tumoral , Neoplasias del Colon/terapia , Ácidos Grasos Monoinsaturados , Terapia Genética , Humanos , Ratones , Ratones Endogámicos BALB C , Poliésteres , Polietilenglicoles , Compuestos de Amonio Cuaternario , ARN Mensajero/genética
16.
Mol Pharm ; 18(9): 3387-3400, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34375118

RESUMEN

Small interfering RNA (siRNA)-based drugs have shown tremendous potential to date in cancer gene therapy. Despite the considerable efforts in siRNA design and manufacturing, unsatisfactory delivery systems persist as a limitation for the application of siRNA-based drugs. In this work, the cholesterol, cell-penetrating peptide conjugate cRGD (R8-cRGD), and polyethylene glycol (PEG) were introduced into low-molecular-weight polyethyleneimine (LMW PEI) to form cRGD-R9-cholesterol-PEI-PEG (RRCPP) nanoparticles with specific targeting and highly penetrating abilities. The enhanced siRNA uptake efficiency of the RRCPP delivery system benefited from R8-cRGD modification. Wee1 is an oncogenic nuclear kinase that can regulate the cell cycle as a crucial G2/M checkpoint. Overexpression of Wee1 in melanoma may lead to a poor prognosis. In the present study, RRCPP nanoparticles were designed for Wee1 siRNA delivery to form an RRCPP/siWee1 complex, which significantly silenced the expression of the WEE1 gene (>60% inhibition) and induced B16 tumor cell apoptosis by abrogating the G2M checkpoint and DNA damage in vitro. Furthermore, the RRCPP/siWee1 complex suppressed B16 tumor growth in a subcutaneous xenograft model (nearly 85% inhibition rate) and lung metastasis (nearly 66% inhibition rate) with ideal in vivo safety. Briefly, our results support the validity of RRCPP as a potential Wee1 siRNA carrier for melanoma gene therapy.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , ARN Interferente Pequeño/administración & dosificación , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas de Ciclo Celular/genética , Péptidos de Penetración Celular/química , Modelos Animales de Enfermedad , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Péptidos Cíclicos/química , Proteínas Tirosina Quinasas/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
17.
Theranostics ; 11(17): 8301-8321, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34373743

RESUMEN

Drug-induced hepatitis (DIH), which seriously interferes with disease treatment, is one of the most common reasons for termination of new drugs during preclinical studies or post-marketing surveillance. Although antioxidants and anti-inflammatory agents are promising, their nonspecific distribution and insolubility limit their application. Therefore, precise drug release at the disease site is an important way to alleviate DIH and avoid side effects. Methods: A gripper-like hydrophilic cyclic phenylboronic acid (cPBA) was synthesized and a nanoprodrug (cPBA-BE) was established by coupling cPBA with hydrophobic baicalein (BE). The stimuli-responsive release properties and therapeutic effect of cPBA-BE on drug-injured hepatocyte were investigated. The biodistribution and therapeutic effect of cPBA-BE both in acetaminophen-induced acute hepatitis model and rifampicin-induced chronic hepatitis model were further evaluated. Results: cPBA-BE conjugate could self-assemble into nanoprodrug with cPBA as the hydrophilic external layer and BE as the hydrophobic core. In HepaRG cells, cPBA-BE showed stronger cellular uptake. Due to the H2O2- and acid-sensitivity, cPBA-BE could achieve adequate BE release, significantly resist the depletion of GSH, mitochondrial dysfunction, downregulation of inflammation and cell apoptosis in the acetaminophen injured HepaRG cells. Biodistribution showed that cPBA-BE specifically increased the concentration of BE in the liver of DIH mice. cPBA-BE could alleviate acetaminophen-induced acute hepatitis or rifampicin-induced chronic hepatitis more effectively through relieving the oxidative stress, inflammation and block the neutrophil infiltration in liver. Conclusions: cPBA is expected to be a good platform for constructing injectable nanoprodrug with both H2O2 and pH-responsive properties by coupling a wide range of drugs containing o-diol. In this study, the nanoprodrug cPBA-BE was determined to be effective for alleviating the DIH.


Asunto(s)
Ácidos Borónicos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Profármacos/farmacología , Animales , Línea Celular Tumoral , Microambiente Celular , Liberación de Fármacos , Ratones , Nanopartículas/química
18.
Nanoscale ; 13(1): 397, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33326545

RESUMEN

Correction for 'A ROS-scavenging multifunctional nanoparticle for combinational therapy of diabetic nephropathy' by Yuna Tong et al., Nanoscale, 2020, DOI: .

19.
J Biomed Nanotechnol ; 16(7): 1018-1044, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33308373

RESUMEN

Based on its rapid expression, simple sequence composition, low immunogenicity, and flexible modification possibilities, in vitro synthesized mRNA has demonstrated strong potential as a candidate for gene therapy. Many efforts have been made to enhance its therapeutic efficacy and safety. Profiting from the development in pathogenesis and materials science, much progress has been achieved in mRNA-based therapy studies. Many mRNA-derived therapeutics including vaccines, antibodies, cytokines, and growth factors have emerged for the treatment of diverse diseases that have multiple modes of action. Novel delivery vectors with enhanced capacity, safety, and properties have been developed to meet the demands of mRNA delivery. Advanced strategies like library screening, environment interaction, and bio-inspiration materials have been used in the investigation process and produced valuable results. In this review, we summarize and discuss recent advances in mRNA-based gene therapy studies.


Asunto(s)
Terapia Genética , Vacunas , ARN Mensajero
20.
Int J Nanomedicine ; 15: 9875-9890, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324056

RESUMEN

BACKGROUND: Drugs that work based on the mechanism of RNA interference have shown strong potential in cancer gene therapy. Although significant progress has been made in small interfering RNA (siRNA) design and manufacturing, ideal delivery system remains a limitation for the development of siRNA-based drugs. Particularly, it is necessary to focus on parameters including delivery efficiency, stability, and safety when developing siRNA formulations for cancer therapy. METHODS: In this work, a novel degradable siRNA delivery system cRGD-R9-PEG-PEI-Cholesterol (rrPPC) was synthesized based on low molecular weight polyethyleneimine (PEI). Functional groups including cholesterol, cell penetrating peptides (CPPs), and poly(ethylene oxide) were introduced to PEI backbone to attain enhanced transfection efficiency and biocompatibility. RESULTS: The synthesized rrPPC was dispersed as nanoparticles in water with an average size of 195 nm and 41.9 mV in potential. rrPPC nanoparticles could efficiently deliver siRNA into C26 clone cancer cells and trigger caveolae-mediated pathway during transmembrane transportation. By loading the signal transducer and activator of transcription 3 (STAT3) targeting siRNA, rrPPC/STAT3 siRNA (rrPPC/siSTAT3) complex demonstrated strong anti-cancer effects in multiple colon cancer models following local delivery. In addition, intravenous (IV) injection of rrPPC/siSTAT3 complex efficiently suppressed lung metastasis tumor progression with ideal in vivo safety. CONCLUSION: Our results provide evidence that rrPPC nanoparticles constitute a potential candidate vector for siRNA-based colon cancer gene therapy.


Asunto(s)
Colesterol/química , Neoplasias del Colon/terapia , Péptidos Cíclicos/química , Polietilenglicoles/química , Polietileneimina/análogos & derivados , ARN Interferente Pequeño/genética , Factor de Transcripción STAT3/deficiencia , Factor de Transcripción STAT3/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Portadores de Fármacos/química , Humanos , Nanopartículas/química , Polietileneimina/química , Interferencia de ARN , ARN Interferente Pequeño/química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA