Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(11): 13806-13814, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38466904

RESUMEN

Hexamethylene diamine, an important chemical intermediate for polyamides, can be synthesized through the two-step route of caprolactam (CPL) ammonolysis to 6-aminocapronitrile (ACN), followed by hydrogenation. This method has received increasing attention from academia and industry. However, studies on the catalyst structure-performance correlation in CPL ammonolysis are still sporadic. In this work, a series of anatase TiO2 with different oxygen vacancy concentrations was prepared by chemical reduction using NaBH4. The oxygen vacancy on TiO2 surface, presented as Ti3+ sites, substantially enhances the adsorption and activation of NH3, which are demonstrated as the key steps in ammonolysis. Owing to the synergistic effect of Ti3+ and Ti4+ species, the CPL conversion rate and ACN selectivity of 85 and 97%, respectively, are achieved within 250 h. Density functional theory calculations showed that the intermediates on oxygen vacancy-rich TiO2 had a more favorable adsorption energy compared to those on intact TiO2, which is in good agreement with the experimental results.

2.
J Colloid Interface Sci ; 660: 810-822, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277838

RESUMEN

Harnessing accelerated interfacial redox, thus boosting charge separation, is of great importance in photocatalytic solar hydrogen generation. In effect, nanoassembling non-noble metallic phases in CdS-based systems and elucidating their role in photocatalysis hold the key to eventually boosting electron shuttle in the field. Here we combine an efficient in-situ exsoluted metallic Co0 nanoparticles on a carbides matrix (CMG) with CdS (CdS@CoCMG) for photogeneration of hydrogen. The metallic cobalt phase exhibits strong binding at the CdS-carbide dual interfaces, forming the accelerated "electron converter" mechanism validated by charge transfer kinetics and achieving two orders of magnitude faster hydrogen production (44.42 mmol g-1 h-1) relative to CdS (0.43 mmol g-1 h-1). We propose that the unique catalyst configuration enable the directional electron-relay photocatalysis via harnessing interfaces between Co0 phase, carbides, and CdS clusters, which eventually boosts the redox process and charge separation of the integrated system, leading to high H2 production rates in the suspension.

3.
Science ; 376(6590): 288-292, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35420967

RESUMEN

Bulk chemicals such as ethylene glycol (EG) can be industrially synthesized from either ethylene or syngas, but the latter undergoes a bottleneck reaction and requires high hydrogen pressures. We show that fullerene (exemplified by C60) can act as an electron buffer for a copper-silica catalyst (Cu/SiO2). Hydrogenation of dimethyl oxalate over a C60-Cu/SiO2 catalyst at ambient pressure and temperatures of 180° to 190°C had an EG yield of up to 98 ± 1%. In a kilogram-scale reaction, no deactivation of the catalyst was seen after 1000 hours. This mild route for the final step toward EG can be combined with the already-industrialized ambient reaction from syngas to the intermediate of dimethyl oxalate.

4.
Biomaterials ; 277: 121129, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34534861

RESUMEN

Exosomes are cell-derived extracellular vesicles and play important roles in mediating intercellular communications. Due to their unique advantages in transporting a variety of biomolecules, exosomes have been emerging as a new class of nanocarriers with great potential for therapeutic applications. Despite advancements in loading chemotherapeutics and interfering RNAs into exosomes, active incorporation of protein molecules into exosomes remains challenging owing to their distinctive physicochemical properties and/or a lack of knowledge of cargo sorting during exosome biogenesis. Here we report the generation of a novel type of engineered exosomes with actively incorporated membrane proteins or soluble protein cargos, named genetically infused functionally tailored exosomes (GIFTed-Exos). Through genetic fusion with exosome-associated tetraspanin CD9, transmembrane protein CD70 and glucocorticoid-induced tumor necrosis factor receptor family-related ligand (GITRL) could be displayed on exosome surface, resulting in GIFTed-Exos with excellent T-cell co-stimulatory activities. By genetically linking to a CD9-photocleavable protein fusion, fluorescent protein mCherry, apoptosis-inducing protein apoptin, and antioxidant enzyme catalase could be effectively packed into exosomes for light-controlled release. The generated GIFTed-Exos display notable in vitro and in vivo activities for delivering distinct types of protein cargos to target cells. As a possibly general approach, GIFTed-Exos provide new opportunities to create exosomes with new functions and properties for biomedical research.


Asunto(s)
Exosomas , Vesículas Extracelulares , Comunicación Celular , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Transporte de Proteínas , Proteínas/metabolismo
5.
Chem Sci ; 12(25): 8791-8802, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34257879

RESUMEN

Coinage metal nanoparticles with high dispersion can serve as highly efficient heterogeneous catalysts. However, owing to their low melting point, poor thermal stability remains a major obstacle towards their application under reaction conditions. It is a common practice to use porous inorganic templates such as mesoporous silica SBA-15 to disperse Ag nanoparticles (NPs) against aggregation but their stability is far from satisfactory. Here, we show that the catalytic activity for hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) over Ag NPs dispersed on SBA-15 silica can be further promoted by incorporation of alkali metal ions at small loading, which follows the inverse order of their cationic size: Li+ > Na+ > K+ > Rb+. Among these, 5Ag1-Li0.05/SBA-15 can double the MG yield compared to pristine 5Ag/SBA-15 under identical conditions with superior thermal stability. Akin to the effect of an ionic surfactant on stabilization of a micro-emulsion, the cationic charge of an alkali metal ion can maintain dispersion and modulate the surface valence of Ag NPs. Interstitial Li in the octahedral holes of the face center packed Ag lattice is for the first time confirmed by X-ray pair distribution function and electron ptychography. It is believed that this interstitial-stabilization of coinage metal nanoparticles could be broadly applicable to multi-metallic nanomaterials for a broad range of C-O bond activating catalytic reactions of esters.

6.
Sci Adv ; 6(34)2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32937362

RESUMEN

Toluene methylation with methanol to produce xylene has been widely investigated. A simultaneous side reaction of methanol-to-olefin over zeolites is hard to avoid, resulting in an unsatisfactory methylation efficiency. Here, CO2 and H2 replace methanol in toluene methylation over a class of ZnZrO x -ZSM-5 (ZZO-Z5) dual-functional catalysts. Results demonstrate that the reactive methylation species (H3CO*; * represents a surface species) are generated more easily by CO2 hydrogenation than by methanol dehydrogenation. Catalytic performance tests on a fixed-bed reactor show that 92.4% xylene selectivity in CO-free products and 70.8% para-xylene selectivity in xylene are obtained on each optimized catalyst. Isotope effects of H2/D2 and CO2/13CO2 indicate that xylene product is substantially generated from toluene methylation rather than disproportionation. A mechanism involving generation of reactive methylation species on ZZO by CO2 hydrogenation and migration of the methylation species to Z5 pore for the toluene methylation to form xylene is proposed.

7.
ACS Appl Mater Interfaces ; 12(24): 27268-27276, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32441505

RESUMEN

Catalyst deactivation is one of the most important issues in heterogeneous catalysis. Constructing a stable nanoscale structure that maintains efficient activity and prolonged stability under redox conditions for catalysis, particularly hydrogenation reactions, remains attractive albeit the flourishing nanoscience. This work presents a facile route to synthesize a semi-encapsulated transition metal by assembling three-dimensional transition metal silicate nanotubes onto carbon nanotubes (CNTs) as precursors. The obtained materials expose an active surface of the transition metal for efficient catalysis and form a specific structure to inhibit the migration of metal nanoparticles (NPs) by establishing strong metal-support interactions. Cu@SiO2 prepared by common precipitation shows an inferior activity, and its performance is easily attenuated because of the aggregation of Cu NPs. The addition of CNTs as a carrier doubles the intrinsic activity of Cu catalysts. This hybrid catalyst, which consists of Cu species, SiO2, and CNTs, is among the best catalysts for dimethyl oxalate hydrogenation with boosting activity of 25 h-1 and enhanced stability of more than 200 h.

8.
Nanoscale ; 12(4): 2603-2612, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31939951

RESUMEN

The selective hydrogenation of phenolics to cyclohexanones is an important process in both industrial application and utilization of fossil and renewable feedstocks. However this process remains a challenge in achieving high conversion of phenolics and high selectivity of ketones under mild reaction conditions. In this work, TiO2 nanowires (TNWs) are successfully synthesized by using an integrated method and the ultra-small Pd clusters were then deposited onto the TNWs by photoreduction. The obtained Pd/TNW catalyst shows superior catalytic performances in the hydrogenation of phenolic derivatives to the corresponding cyclohexanones. In particular, a nearly full conversion of phenol with high selectivity (>99.0%) to cyclohexanone can be achieved at 50 °C and 5.0 bar H2 in water. A series of characterization studies by means of XRD, XPS, EPR, FTIR, TPD, STEM, and kinetic studies indicate that abundant exposed Lewis acid and basic sites on the surface of TNWs play important roles in the activation of phenolics and desorption of cyclohexanones, while the Pd clusters by photodeposition can attain a hybrid of Pd0 and Pd2+ species to facilitate the activation of dihydrogenation. A plausible catalytic pathway with synergistic effects of TNWs and Pd species is then proposed.

9.
ChemSusChem ; 12(23): 5199-5206, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31647183

RESUMEN

The efficient hydrodeoxygenation (HDO) of lignin-derived oxygenates is essential but challenging owing to the inherent complexity of feedstock and the lack of effective catalytic approaches. A catalytic strategy has been developed that separates C-O hydrogenolysis and aromatic hydrogenation on different active catalysts with interoperation that can achieve high oxygen removal in lignin-derived oxygenates. The flexible use of tungsten carbide for C-O bond cleavage and a nickel catalyst with controlled particle size for arene hydrogenation enables the tunable production of cyclohexane and cyclohexanol with almost full conversion of guaiacol. Such integration of dual catalysts in close proximity enables superior HDO of bio-oils into liquid alkanes with high mass and carbon yields of 27.9 and 45.0 wt %, respectively. This finding provides a new effective strategy for practical applications.

10.
ACS Appl Mater Interfaces ; 11(12): 11317-11326, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30835098

RESUMEN

Heterogeneously and uniformly dispersed metal nanoclusters with high thermal stability and stable nonmetallic nature show outstanding catalytic performance. In this work, we report on the role of sulfur moieties in hydrochlorination catalysis over carbon-supported gold (Au/C). A combination of experimental and theoretical analyses shows that the -SO3H and derived -SO2H sulfur species in high oxidation states at the interface between Au and -SO3H at ≥180 °C give rise to high thermal stability and catalytic activity. By contrast, the grafted thiol group (-SH) and the derived low-valence sulfur species on carbon markedly destabilize the Au nanoclusters, promoting their rapid sintering into large Au nanoparticles and leading to the loss of their cationic nature. Theoretical calculations suggest that -SO3H favorably adsorbs and stabilizes cationic Au species. Compared to Au/C and Au-SH/C with the Auα+/Au0 atomic ratios of 1.02 and 0.24, respectively (α = 1 or 3), the activity and durability of acetylene hydrochlorination are remarkably enhanced by the interaction between the -SO3H moieties and cationic Au species that enables the high oxidation state of Au to be effectively retained (Auα+/Au0 = 3.82). These results clearly demonstrate the double-edged sword effect of sulfur moieties on the catalytic Au component in acetylene hydrochlorination. The double-edged sword effect of sulfur species in the stabilization/destabilization of metal nanoclusters is also applicable to other metals such as Ru, Pd, Pt, and Cu. Overall, this study enriches the general understanding of the stabilization of metal clusters and provides insight into a wet chemistry strategy for stabilizing supported ligand-free nanoclusters.

11.
Nat Commun ; 10(1): 914, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796236

RESUMEN

Replacement of Hg with non-toxic Au based catalysts for industrial hydrochlorination of acetylene to vinyl chloride is urgently required. However Au catalysts suffer from progressive deactivation caused by auto-reduction of Au(I) and Au(III) active sites and irreversible aggregation of Au(0) inactive sites. Here we show from synchrotron X-ray absorption, STEM imaging and DFT modelling that the availability of ceria(110) surface renders Au(0)/Au(I) as active pairs. Thus, Au(0) is directly involved in the catalysis. Owing to the strong mediating properties of Ce(IV)/Ce(III) with one electron complementary redox coupling reactions, the ceria promotion to Au catalysts gives enhanced activity and stability. Total pre-reduction of Au species to inactive Au nanoparticles of Au/CeO2&AC when placed in a C2H2/HCl stream can also rapidly rejuvenate. This is dramatically achieved by re-dispersing the Au particles to Au(0) atoms and oxidising to Au(I) entities, whereas Au/AC does not recover from the deactivation.

12.
Nat Commun ; 9(1): 3367, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135546

RESUMEN

Metal-support interaction is one of the most important parameters in controlling the catalysis of supported metal catalysts. Silica, a widely used oxide support, has been rarely reported as an effective support to create active metal-support interfaces for promoting catalysis. In this work, by coating Cu microparticles with mesoporous SiO2, we discover that Cu/SiO2 interface creates an exceptional effect to promote catalytic hydrogenation of esters. Both computational and experimental studies reveal that Cu-Hδ- and SiO-Hδ+ species would be formed at the Cu-O-SiOx interface upon H2 dissociation, thus promoting the ester hydrogenation by stablizing the transition states. Based on the proposed catalytic mechanism, encapsulting copper phyllosilicate nanotubes with mesoporous silica followed by hydrogen reduction is developed as an effective method to create a practical Cu nanocatalyst with abundant Cu-O-SiOx interfaces. The catalyst exhibits the best performance in the hydrogenation of dimethyl oxalate to ethylene glycol among all reported Cu catalysts.

13.
J Environ Sci (China) ; 64: 122-129, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29478631

RESUMEN

In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag1-Cu0.1/SBA-15 catalyst, on which the soot combustion starts at Tig=225°C with a T50=285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance.


Asunto(s)
Modelos Químicos , Hollín/química , Catálisis , Cobre/química , Oro/química , Dióxido de Silicio/química , Temperatura , Difracción de Rayos X
14.
Nanoscale ; 10(7): 3331-3341, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29384541

RESUMEN

Heterogeneous catalytic oxidation arises from the prerequisite oxygen activation and transfer ability of metal oxide catalysts. Thus, engineering intercalated nanounits and heterophase metal oxide structures, and forming interstitial catalyst supports at the nanoscale level can drastically alter the catalytic performances of metal oxides. This is particularly important for ceria-based nanomaterial catalysts, where the interactions of reducible ceria (CeO2) and nonreducible oxides are fundamental for the preparation of enhanced catalysts for oxygen-involved reactions. Herein, we intercalated nanostructured CeO2 in the bulk phase of magnesium aluminate spinel (MgAl2O4, referred to as MgAl), produced the interstitial effect between CeO2 nanoparticles and MgAl crystallites, thus boosting their oxygen transfer and activation capability. This nanoscaled intercalation engineering significantly enhanced the number and quality of tight contact points between the nanostructured CeO2 and MgAl units. Therefore, the oxygen storage/release capability (OSC) is exceptionally improved as revealed by various characterizations and catalytic carbon oxidation reaction. A mechanism similar to the Mars-van Krevelen process at the nanoscale level was invoked to explain the catalytic oxidation mechanisms. The reactive oxygen species of gaseous O2 originate formed the bulk of the as-obtained nanomaterial, where strong interactions between the CeO2 and MgAl components occured, which were subsequently released and diffused to the catalyst-interface at elevated temperatures. Silver supported on Ce-MgAl produced an approximately 4-fold higher concentration of active oxygen species than Ag/MgAl, and gives the optimum low-temperature oxidation at 229 °C. This study verifies the importance of the redox performance of ceria-spinel with enhanced OSC, which validates that the arrangement of contacts at the nanoscale can substantially boost the catalytic reactivity without varying the microscale structure and properties of spinel.

15.
Chem Commun (Camb) ; 53(74): 10295-10298, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28869256

RESUMEN

Evenly dispersed tungsten carbides with controlled phase compositions that exhibit an impressive capacity to carry out the regioselective hydrogenolysis of inert aryl ether C-O bonds instead of aliphatic C-O bonds to produce aromatic compounds are reported.

16.
Chem Commun (Camb) ; 53(51): 6933-6936, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28612069

RESUMEN

Copper nanoparticles exsoluted in situ under a reducing atmosphere at elevated temperatures are socketed into the parent copper phyllosilicate nanotubes and exhibit excellent catalytic performance and superior stability for the selective hydrogenation of various esters to alcohols.

17.
Nanoscale ; 8(11): 5959-67, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26924186

RESUMEN

A confined Ag nanomaterial in the channels of herringbone multi-walled carbon nanotubes (Ag-in/hCNT) was effectively prepared. The space restriction induces morphological changes of Ag nanoparticles into rough nanowires with an estimated aspect ratio of 60 : 8 (nm/nm). Dihydrogen activation is enhanced through the vacancy-enriched wire-like Ag nanocatalyst, as well as the confinement effect. The grain boundaries of Ag and rolled-up graphene layers of CNTs are speculated to play vital roles in the diffusion of activated hydrogen species. The Ag-in/hCNT catalyst exhibits an activity that is three times higher than that of Ag nanoparticles located on the CNT exterior walls in DMO hydrogenation. This finding may insinuate that interplanar spaces provide available access to the external surface of CNTs. Designed experiments further confirm the importance of herringbone CNTs with higher reaction rate than parallel CNTs, and confined Ag produces considerably more activated hydrogen species, thereby benefiting the reduction of surface copper nanoparticles or DMO molecules during hydrogenation. This paper presents a study of the effective utilization of hydrogen over herringbone CNT confined Ag and an understanding of the confinement and promotional catalytic effects.

18.
Chem Sci ; 7(5): 3181-3187, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29997810

RESUMEN

Downsizing large Au particles into small particles with controllable size remains challenging. In this study, we redispersed large sintered Au particles on activated carbon (Au/C) to highly dispersed nanoparticles with uniform distribution and controllable size after treatment with iodohydrocarbons. The Au/C catalyst was conducted for a number of deactivation/regeneration cycles with negligible deterioration in catalytic performance for acetylene hydrochlorination. The redispersion behavior reveals a reverse agglomeration process in the presence of iodohydrocarbons under mild conditions. This behavior is significantly related to the C-I bond dissociation energy (BDE) and adsorption of iodic species on Au particles. A novel protocol for controlling the size and predicting the redispersion efficiency of Au particles is established by correlating with the C-I BDEs of iodohydrocarbons. The molecular-level interpretation of redispersion provides a thorough mechanism based on experimental results. This study presents an efficient method for the easy regeneration of sintered Au-based catalysts for practical applications.

19.
Transgenic Res ; 23(2): 365-75, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24307331

RESUMEN

The important differences in physiological parameters and anatomical characteristics of the kidney between humans and mice make it difficult to replicate the precise progression of human renal cystic diseases in gene modification mouse models. In contrast to mice, pigs are a better animal model of human diseases, as they are more similar in terms of organ size, structure, and physiological parameters. Here, we report the generation and initial examination of an AQP2-Cre transgenic (Tg) Chinese miniature (mini)-pig line that expresses Cre recombinase exclusively in kidney collecting duct cells. An 8-kb fragment of the mini-pig aquaporin 2 (AQP2) 5'-flanking region was utilized to direct Cre expression in Tg mini-pigs. Two Tg mini-pigs were generated by pig somatic cell nuclear transfer and both carried the entire coding sequence of Cre recombinase. RT-PCR and western blotting analysis revealed that Cre recombinase was uniquely expressed in the kidney, while immunohistochemical studies located its expression in kidney collecting duct cells. Furthermore, six integration sites and 12-14 copies of the Cre gene were detected in various tissues by high-efficiency thermal asymmetric interlaced PCR and absolute quantitative real-time PCR, respectively. Combined with previous studies of Cre recombinase activity, we believe that this AQP2-Cre Tg mini-pig line will be a useful tool to generate kidney collecting duct cell-specific gene knockout mini-pig models, thereby allowing the investigation of gene functions in kidney development and the mechanisms of human renal cystic disease.


Asunto(s)
Animales Modificados Genéticamente/genética , Acuaporina 2/genética , Integrasas/metabolismo , Túbulos Renales Colectores/enzimología , Modelos Animales , Porcinos Enanos/genética , Animales , Western Blotting , Cartilla de ADN/genética , Fibroblastos , Inmunohistoquímica , Integrasas/genética , Túbulos Renales Colectores/citología , Técnicas de Transferencia Nuclear , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...