Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 253: 114660, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36812872

RESUMEN

After intensive research on the gut-brain axis, intestinal dysbiosis is considered to be one of the important pathways of cognitive decline. Microbiota transplantation has long been thought to reverse the behavioral changes in the brain caused by colony dysregulation, but in our study, microbiota transplantation seemed to improve only behavioral brain function, and there was no reasonable explanation for the high level of hippocampal neuron apoptosis that remained. Butyric acid is one of the short-chain fatty acids of intestinal metabolites and is mainly used as an edible flavoring. It is commonly used in butter, cheese and fruit flavorings, and is a natural product of bacterial fermentation of dietary fiber and resistant starch in the colon, acting similarly to the small-molecule HDAC inhibitor TSA. The effect of butyric acid on HDAC levels in hippocampal neurons in the brain remains unclear. Therefore, this study used rats with low bacterial abundance, conditional knockout mice, microbiota transplantation, 16S rDNA amplicon sequencing, and behavioral assays to demonstrate the regulatory mechanism of short-chain fatty acids on the acetylation of hippocampal histones. The results showed that disturbance of short-chain fatty acid metabolism led to high HDAC4 expression in the hippocampus and regulated H4K8ac, H4K12ac, and H4K16ac to promote increased neuronal apoptosis. However, microbiota transplantation did not change the pattern of low butyric acid expression, resulting in maintained high HDAC4 expression in hippocampal neurons with continued neuronal apoptosis. Overall, our study shows that low levels of butyric acid in vivo can promote HDAC4 expression through the gut-brain axis pathway, leading to hippocampal neuronal apoptosis, and demonstrates that butyric acid has great potential value for neuroprotection in the brain. In this regard, we suggest that patients with chronic dysbiosis should pay attention to changes in the levels of SCFAs in their bodies, and if deficiencies occur, they should be promptly supplemented through diet and other means to avoid affecting brain health.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Ratones , Ratas , Animales , Ácido Butírico/farmacología , Ácidos Grasos Volátiles/metabolismo , Bacterias/genética , Bacterias/metabolismo , Hipocampo/metabolismo , Apoptosis , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología
2.
Anal Methods ; 15(1): 8-16, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36484272

RESUMEN

The design of highly active nanozymes and the establishment of ultra-sensitive bioassays remain a challenge. Therefore, it is necessary to synthesize highly active nanozymes. In this work, a Pd-Pt-Ru (PPR) nanozyme was prepared by atomic coating of the bimetallic nanozyme Pd-Pt. The steady-state kinetics showed that the PPR nanozyme had excellent peroxidase-like activity. Based on this concept, the as-prepared PPR nanozyme was applied to the detection of ascorbic acid (AA) and hydrogen peroxide (H2O2). The linear ranges for ascorbic acid and hydrogen peroxide were 2-12 µM and 5-40 mM, respectively. The limits of detection (LOD) are 1.13 µM and 2.79 mM, respectively. Ascorbic acid was used as a typical model to assay the total antioxidant capacity (TAC) of foods and several herbs. The Fructus Corni extract showed the highest reducing ability. The corresponding extracts were applied for the green synthesis of silver nanoparticles with a size of 167 nm. This study provides a method for the design of highly active nanozymes and the expansion of their applications.


Asunto(s)
Antioxidantes , Nanopartículas del Metal , Peróxido de Hidrógeno , Plata , Ácido Ascórbico , Peroxidasas
3.
Biomed Res Int ; 2022: 5633403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440358

RESUMEN

With the development of human genome sequencing and techniques such as intestinal microbial culture and fecal microbial transplantation, newly discovered microorganisms have been isolated, cultured, and researched. Consequently, many beneficial probiotics have emerged as next-generation probiotics (NGPs). Currently, "safety," "individualized treatment," and "internal interaction within the flora" are requirements of a potential NGPs. Furthermore, in the complex ecosystem of humans and microbes, it is challenging to identify the relationship between specific strains, specific flora, and hosts to warrant a therapeutic intervention in case of a disease. Thus, this review focuses on the progress made in NGPs and human health research by elucidating the limitations of traditional probiotics; summarizing the functions and strengths of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides fragilis, Eubacterium hallii, and Roseburia spp. as NGPs; and determining the role of their intervention in treatment of certain diseases. Finally, we aim to provide a reference for developing new probiotics in the future.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Humanos , Ecosistema , Probióticos/uso terapéutico , Intestinos
4.
Front Neurosci ; 16: 922331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937897

RESUMEN

In addition to its profound implications in the fight against cancer, pyroptosis have important role in the regulation of neuronal injury. Microglia are not only central members of the immune regulation of the central nervous system (CNS), but are also involved in the development and homeostatic maintenance of the nervous system. Under various pathological overstimulation, microglia pyroptosis contributes to the massive release of intracellular inflammatory mediators leading to neuroinflammation and ultimately to neuronal damages. In addition, microglia pyroptosis lead to further neurological damage by decreasing the ability to cleanse harmful substances. The pathogenic roles of microglia in a variety of CNS diseases such as neurodegenerative diseases, stroke, multiple sclerosis and depression, and many other neurological disorders have been gradually unveiled. In the context of different neurological disorders, inhibition of microglia pyroptosis by targeting NOD-like receptor family pyrin domain containing (NLRP) 3, caspase-1 and gasdermins (GSDMs) by various chemical agents as well as natural products significantly improve the symptoms or outcome in animal models. This study will provide new ideas for immunomodulatory treatment of CNS diseases.

5.
Int J Clin Health Psychol ; 22(3): 100323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35892042

RESUMEN

Background/Objective: The gut microbiota plays a pivotal role in psychological health, but the mechanistic perspective between gut microbiome and mental health remains poorly understood. Method: The present case-controlled study recruited 30 unimprisoned subjects and 31 inmates that had been detained in jail for no more than a month. The mental health status, gut microbiota and blood NH3, H2S, 5-hydroxy trptamine and dopamine levels were measured. Results: Compared with unimprisoned controls, the fresh inmates exhibited significantly higher scores on anxiety and depression. Both phylogenetic structure and functional genes of the gut microbiota markedly shifted in inmates. Inmates was more Bacteroides-dominated, while unimprisoned subjects were more Prevotella-dominated. Short-chain fatty acids (SCFAs)-producing genera were largely decreased in inmates and were negatively related to mental disorder scores, while Bacteroidetes and Proteobacteria were positive to anxiety and depression scores. Simultaneously, the inmates possessed reduced genes that participate in amino acids, carbohydrates and vitamin cofactors metabolism, but enriched genes that involved in the neurotransmitter-producing Shikimate pathway. Correlation analysis revealed that Anaerotruncus and Prevotella were negative to depression score, and Enterococcus was negative to anxiety score. Conclusions: Our results revealed potential link between gut microbiota and mental health, leading further support to the microbiota-gut-brain axis theory.

6.
Front Cell Infect Microbiol ; 12: 783682, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35521221

RESUMEN

Background: Unlike chemical drugs with a single or a few kinds of active compounds, traditional Chinese medicines (TCMs)uses herbal formulas composed of numerous kinds of chemical constituents. Therefore, TCM clinical trials require unique and stricter standards for collecting, preserving, and transporting fecal samples than those used for chemical drugs. Unfortunately, there are no special standards for processing fecal samples in TCM clinical trials. Methods: We invited interdisciplinary experts within TCM clinical trials and gut microbiome research to help formulate this standard. After more than a year's in-depth discussion and amendments, we achieved a standard via expert interviews, literature research, questionnaire surveys, and public opinion solicitation. This standard has been reviewed and approved by the Standards Office of China of the Association of Chinese medicine. Results: We established a sample information processing method prior to TCM clinical sample collection, which is adapted to the unique features of TCM. The method formulates detailed processing requirements for TCM information in addition to the factors that may disturb the gut microbiome. We also constructed a set of methods for collecting, preserving, and transporting fecal samples that meet the characteristics of TCM. These methods formulate detailed operating specifications on the collection approaches, storage conditions, transportation requirements, and management of fecal samples. Conclusions: This standard guides the information processing prior to sample collection and the standard operating procedures for the collection, preservation, and transportation of fecal samples in TCM clinical trials, which also can be used as a reference by clinicians and researchers in modern medicines.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , China , Heces , Medicina Tradicional China , Preservación Biológica
7.
Heliyon ; 7(1): e05850, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33392409

RESUMEN

The recent pandemic, COVID-19, is caused by a novel coronavirus, SARS-CoV-2, with elusive origin. SARS-CoV-2 infects mammalian cells via ACE2, a transmembrane protein. Therefore, the conservation and expression patterns of ACE2 may provide valuable insights into tracing the carriers of SARS-CoV-2. In this work, we analyzed the conservation of ACE2 and its expression pattern among various mammalian species that are close to human beings. We show that mammalian ACE2 gene is deeply conserved at both DNA and peptide levels, suggesting that a broad range of mammals can potentially host SARS-CoV-2. We further report that ACE2 expression in certain human tissues are consistent with clinical symptoms of COVID-19 patients. Furthermore, we have built the first atlas of ACE2 expression in various common mammals, which shows that ACE2 expresses in mammalian tissues in a species-specific manner. Most notably, we observe exceptionally high expression of ACE2 in external body parts of cats and dogs, suggesting that these household pet animals could be vulnerable to viral infections and/or may serve as intermediate hosts, thus yielding novel insights into the transmission of SARS-CoV-2.

8.
Sheng Wu Gong Cheng Xue Bao ; 36(12): 2511-2515, 2020 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-33398949

RESUMEN

Microbes are the most important commensal organisms in humans, animals and plants, and are the major habitants in soil, sediment, water, air and other habitats. The analysis of microbiome in these habitats has become a basic research technique. As a fast developing technology in recent years, microbiome sequencing and analysis have been widely used in human health, environmental pollution control, food industry, agriculture and animal husbandry and other fields. In order to sort out and summarize the current status, development and application prospects of microbiome sequencing and analysis technologies, this special issue has prepared a collection of 16 papers in this field, that comprise sample preservation and processing, single microbe genome sequencing and analysis, and microbiome feature analysis in special habitats, microbiome related databases and algorithms, and microbiome sequencing and analysis expert consensus. It also introduced in detail the development trend of the microbiome sequencing and analysis, in order to promote the rapid development of the microbiome sequencing and analysis industry and scientific research in China, and provide necessary reference for the healthy development of related industries.


Asunto(s)
Metagenoma , Microbiota , Animales , Bacterias/genética , China , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Microbiota/genética , ARN Ribosómico 16S
9.
Sheng Wu Gong Cheng Xue Bao ; 36(12): 2525-2540, 2020 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-33398951

RESUMEN

Gut microbiota is closely related to human health, and its composition can give us health information. The large-scale population sampling is required on gut microbiome research; however, fresh feces samples are not easy to obtain, and rapid low-temperature freezing is difficult to achieve. With the development of technology, preservation solutions are widely used for sample collection, storage, and transport under normal temperature conditions. Preservation solutions can be used in large scale sample collection, wide geographical distribution, diverse on-site sampling conditions, heavy workload, and poor transportation conditions. In this study, five healthy volunteers were recruited. After collecting their fresh stool samples, effect of 5 different commercial preservation solutions was evaluated at room temperature. Samples in different preservation solutions after placing fresh stool samples at the 0, 1, 3, 7, 15, and 30 days were collected. All samples were tested by 16S rRNA V3-V4 high-throughput sequencing to analyze the influence of microbiome composition in different preservation solutions. The results show that different preservation solutions had distinct effects on the gut microbiome composition. Compared with the control, different preservation solutions had little effect on the amount of OUTs; preservation solutions A, B and C were closer to the control in the composition of the gut microbiota, but preservation solution D significantly changed the composition by increasing Actinobacteria and Firmicutes abundance. With the time, all solutions tended to reduce the diversity of the microbiota. Preservation solution E significantly reduced the diversity of the flora; on the 30th day, all five solutions changed the composition; the individual differences in the composition of the gut microbiome were the main factors affecting the similarity of each sample, and were derived from different stools donors. The same samples, no matter which storage solution and storage time, were directly closer to each other. Different storage solutions had different effects on the content of Gram-positive bacilli, Gram-positive cocci and Gram-negative bacteria. Storage solutions C and E reduced the abundance of Bifidobacterium, whereas storage solution D increased; except that preservation solution E relatively reduced the abundance of Lactobacillus, but the preservation solution A, B, C, and D were all closer to the control. Except for the greater difference in preservation solution D, preservation solution C was the closest to the control group on Streptococcus; preservation solution D reduced Ruminococcaceae UCG 003 than the control group. However, other preservation solutions were not much different from the control group; different preservation solutions increased the abundance of Escherichia-Shigella than the control group, and preservation solutions A and B increased the abundance of Klebsiella, but preservation solution C, D, and E were closer to the control group. Overall, preservation solution C performed better in stabilizing the composition of the gut microbiota. This study provides reference for standardized microbiome projects. Subsequent research can choose a targeted preservation solution and preservation time based on this study.


Asunto(s)
Microbioma Gastrointestinal , Bacterias/genética , Heces , Humanos , ARN Ribosómico 16S/genética , Manejo de Especímenes
10.
Sheng Wu Gong Cheng Xue Bao ; 36(12): 2516-2524, 2020 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-33398950

RESUMEN

In the past ten years, the research and application of microbiome has continued to increase. The microbiome has gradually become the research focus in the fields of life science, environmental science, and medicine. Meanwhile, many countries and organizations around the world are launching their own microbiome projects and conducting a multi-faceted layout, striving to gain a strategic position in this promising field. In addition, whether it is scientific research or industrial applications, there has been a climax of research and a wave of investment and financing, accordingly, products and services related to the microbiome are constantly emerging. However, due to the rapid development of microbiome sequencing and analysis related technologies and methods, the research and application from various countries have not yet unified on the standards of technology, programs, and data. Domestic industry participants also have insufficient understanding of the microbiome. New methods, technologies, and theories have not yet been fully accepted and used. In addition, some of the existing standards and guidelines are too general with poor practicality. This not only causes obstacles in the integration of scientific research data and waste of resources, but also gives related companies unfair competition opportunity. More importantly, China still lacks national standards related to the microbiome, and the national microbiome project is still in the process of preparation. In this context, the experts and practitioners of the microbiome worked together and developed the consensus of experts. It can not only guide domestic scientific research and industrial institutions to regulate the production, learning and research of the microbiome, the application can also provide reference technical basis for the relevant national functional departments, protect the scale and standardized corporate company's interests, strengthen industry self-discipline, avoid unregulated enterprises from disrupting the market, and ultimately promote the benign development of microbiome-related industries.


Asunto(s)
Microbiota , China , Consenso , Humanos , Industrias
11.
Microbiologyopen ; 8(12): e939, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31568677

RESUMEN

Bifidobacterium and Lactobacillus are beneficial for human health, and many strains of these two genera are widely used as probiotics. We used two large datasets published by the American Gut Project (AGP) and a gut metagenomic dataset (NBT) to analyze the relationship between these two genera and the community structure of the gut microbiota. The meta-analysis showed that Bifidobacterium, but not Lactobacillus, is among the dominant genera in the human gut microbiota. The relative abundance of Bifidobacterium was elevated when Lactobacillus was present. Moreover, these two genera showed a positive correlation with some butyrate producers among the dominant genera, and both were associated with alpha diversity, beta diversity, and the robustness of the gut microbiota. Additionally, samples harboring Bifidobacterium present but no Lactobacillus showed higher alpha diversity and were more robust than those only carrying Lactobacillus. Further comparisons with other genera validated the important role of Bifidobacterium in the gut microbiota robustness. Multivariate analysis of 11,744 samples from the AGP dataset suggested Bifidobacterium to be associated with demographic features, lifestyle, and disease. In summary, Bifidobacterium members, which are promoted by dairy and whole-grain consumption, are more important than Lactobacillus in maintaining the diversity and robustness of the gut microbiota.


Asunto(s)
Bifidobacterium , Biodiversidad , Microbioma Gastrointestinal , Susceptibilidad a Enfermedades , Humanos , Lactobacillus , Estilo de Vida , Probióticos , Estados Unidos
12.
Front Microbiol ; 9: 2629, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30450089

RESUMEN

Agricultural soils are a significant source of anthropogenic nitrous oxide (N2O) emissions, because of fertilizer application and decomposition of crop residues. We studied interactions between nitrogen (N) amendments and soil conditions in a 2-year field experiment with or without catch crop incorporation before seeding of spring barley, and with or without application of N in the form of digested liquid manure or mineral N fertilizer. Weather conditions, soil inorganic N dynamics, and N2O emissions were monitored during spring, and soil samples were analyzed for abundances of nitrite reduction (nirK and nirS) and N2O reduction genes (nosZ clade I and II), and structure of nitrite- and N2O-reducing communities. Fertilization significantly enhanced soil mineral N accumulation compared to treatments with catch crop residues as the only N source. Nitrous oxide emissions, in contrast, were stimulated in rotations with catch crop residue incorporation, probably as a result of concurrent net N mineralization, and O2 depletion associated with residue degradation in organic hotspots. Emissions of N2O from digested manure were low in both years, while emissions from mineral N fertilizer were nearly absent in the first year, but comparable to emissions from catch crop residues in the second year with higher precipitation and delayed plant N uptake. Higher gene abundances, as well as shifts in community structure, were also observed in the second year, which were significantly correlated to NO 3 - availability. Both the size and structure of the nitrite- and N2O-reducing communities correlated to the difference in N2O emissions between years, while there were no consistent effects of management as represented by catch crops or fertilization. It is concluded that N2O emissions were constrained by environmental, rather than the genetic potential for nitrite and N2O reduction.

13.
J Environ Qual ; 46(4): 767-775, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28783780

RESUMEN

Livestock slurry is a major source of atmospheric methane (CH), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH emissions. This study examined conditions for CH oxidation by in situ measurements of oxygen (O) and nitrous oxide (NO), as a proxy for inorganic N transformations, in intact crusts using microsensors. This was combined with laboratory incubations of crust material to investigate the effects of O, CH, and inorganic N on CH oxidation, using CH to trace C incorporation into lipids of MOB. Oxygen penetration into the crust was 2 to 14 mm, confining the potential for aerobic CH oxidation to a shallow layer. Nitrous oxide accumulated within or below the zone of O depletion. With 10 ppmv CH there was no O limitation on CH oxidation at O concentrations as low as 2%, whereas CH oxidation at 10 ppmv CH was reduced at ≤5% O. As hypothesized, CH oxidation was in general inhibited by inorganic N, especially NO, and there was an interaction between N inhibition and O limitation at 10 ppmv CH, as indicated by consistently stronger inhibition of CH oxidation by NH and NO at 3% compared with 20% O. Recovery of C in phospholipid fatty acids suggested that both Type I and Type II MOB were active, with Type I dominating high-concentration CH oxidation. Given the structural heterogeneity of crusts, CH oxidation activity likely varies spatially as constrained by the combined effects of CH, O, and inorganic N availability in microsites.


Asunto(s)
Metano/metabolismo , Microbiología del Suelo , Metano/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Óxido Nitroso , Oxidación-Reducción , Oxígeno/análisis , Oxígeno/metabolismo
14.
Sci China Life Sci ; 60(11): 1223-1233, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28536926

RESUMEN

The aim of this study was to compare the structure of gut microbiota in Parkinson's disease (PD) patients and healthy controls; and to explore correlations between gut microbiota and PD clinical features. We analyzed fecal bacterial composition of 24 PD patients and 14 healthy volunteers by using 16S rRNA sequencing. There were significant differences between PD and healthy controls, as well as among different PD stages. The putative cellulose degrading bacteria from the genera Blautia (P=0.018), Faecalibacterium (P=0.048) and Ruminococcus (P=0.019) were significantly decreased in PD compared to healthy controls. The putative pathobionts from the genera Escherichia-Shigella (P=0.038), Streptococcus (P=0.01), Proteus (P=0.022), and Enterococcus (P=0.006) were significantly increased in PD subjects. Correlation analysis indicated that disease severity and PD duration negatively correlated with the putative cellulose degraders, and positively correlated with the putative pathobionts. The results suggest that structural changes of gut microbiota in PD are characterized by the decreases of putative cellulose degraders and the increases of putative pathobionts, which may potentially reduce the production of short chain fatty acids, and produce more endotoxins and neurotoxins; and these changes is potentially associated with the development of PD pathology.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Metagenoma/fisiología , Enfermedad de Parkinson/microbiología , Enfermedad de Parkinson/fisiopatología , Anciano , Bacterias/clasificación , Encéfalo/patología , ADN Bacteriano , Progresión de la Enfermedad , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Interacciones Huésped-Patógeno , Humanos , Masculino , Metagenoma/genética , ARN Ribosómico 16S/genética
15.
Appl Environ Microbiol ; 83(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27742682

RESUMEN

Grassland cultivation can mobilize large pools of N in the soil, with the potential for N leaching and N2O emissions. Spraying with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) before cultivation was simulated by use of soil columns in which the residue distribution corresponded to plowing or rotovation to study the effects of soil-residue contact on N transformations. DMPP was sprayed on aboveground parts of ryegrass and white clover plants before incorporation. During a 42-day incubation, soil mineral N dynamics, potential ammonia oxidation (PAO), denitrifying enzyme activity (DEA), nitrifier and denitrifier populations, and N2O emissions were investigated. The soil NO3- pool was enriched with 15N to trace sources of N2O. Ammonium was rapidly released from decomposing residues, and PAO was stimulated in soil near residues. DMPP effectively reduced NH4+ transformation irrespective of residue distribution. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) were both present, but only the AOB amoA transcript abundance correlated with PAO. DMPP inhibited the transcription of AOB amoA genes. Denitrifier genes and transcripts (nirK, nirS, and clades I and II of nosZ) were recovered, and a correlation was found between nirS mRNA and DEA. DMPP showed no adverse effects on the abundance or activity of denitrifiers. The 15N enrichment of N2O showed that denitrification was responsible for 80 to 90% of emissions. With support from a control experiment without NO3- amendment, it was concluded that DMPP will generally reduce the potential for leaching of residue-derived N, whereas the effect of DMPP on N2O emissions will be significant only when soil NO3- availability is limiting. IMPORTANCE: Residue incorporation following grassland cultivation can lead to mobilization of large pools of N and potentially to significant N losses via leaching and N2O emissions. This study proposed a mitigation strategy of applying 3,4-dimethylpyrazole phosphate (DMPP) prior to grassland cultivation and investigated its efficacy in a laboratory incubation study. DMPP inhibited the growth and activity of ammonia-oxidizing bacteria but had no adverse effects on ammonia-oxidizing archaea and denitrifiers. DMPP can effectively reduce the potential for leaching of NO3- derived from residue decomposition, while the effect on reducing N2O emissions will be significant only when soil NO3- availability is limiting. Our findings provide insight into how DMPP affects soil nitrifier and denitrifier populations and have direct implications for improving N use efficiency and reducing environmental impacts during grassland cultivation.


Asunto(s)
Betaproteobacteria/metabolismo , Pradera , Nitrificación/efectos de los fármacos , Nitrógeno/metabolismo , Óxido Nitroso/metabolismo , Pirazoles/farmacología , Microbiología del Suelo , Amoníaco/metabolismo , Archaea/metabolismo , Betaproteobacteria/efectos de los fármacos , Betaproteobacteria/genética , Betaproteobacteria/crecimiento & desarrollo , Desnitrificación , Fosfatos/metabolismo
16.
Behav Neurol ; 2015: 797862, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26457003

RESUMEN

Hydrothion (H2S) and ammonia (NH3) can be toxic for the human central nervous system and cause psychological disturbances and behavioral disorders. In order to evaluate the association between the two potential toxicants and mental health, in this study, we compare a male prisoner and control population. Forty-nine male prisoners and 52 control volunteers took part in the study. An aggressive behavior assessment, the Self-Rating Depression Scale (SDS), and the State-Trait Anxiety Inventory (STAI) were used to characterize the participants' mental health status. Venous blood was collected for detection of H2S and NH3. The results indicated that blood NH3 was significantly higher in male prisoners than in controls. However, blood H2S was significantly lower. Blood NH3 was also significantly and positively correlated with prisoners. In the multivariate adjusted models, after controlling for age, education, marital status, and BMI, we found a positive association between NH3 and prisoners, but not blood H2S. While the functions of the two toxicants were quite different, blood NH3 may be a potential biological risk factor for behavioral disorders and blood H2S showed neuroprotection. Additionally, the impact of other factors such as diet and gut bacteria should be considered when evaluating risk for behavioral disorders.


Asunto(s)
Amoníaco/sangre , Ansiedad/diagnóstico , Depresión/diagnóstico , Trastornos Mentales/diagnóstico , Prisioneros , Adulto , Ansiedad/sangre , Biomarcadores/sangre , Depresión/sangre , Humanos , Masculino , Trastornos Mentales/sangre , Modelos Teóricos , Factores de Riesgo
17.
Toxicol Appl Pharmacol ; 272(3): 895-904, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23933165

RESUMEN

Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO2), carbon dioxide tension, pH, and the PaO2/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22(phox) levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI.


Asunto(s)
Lesión Pulmonar Aguda/enzimología , Lesión Pulmonar Aguda/prevención & control , Chalcona/análogos & derivados , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Ácido Oléico/toxicidad , Quinonas/uso terapéutico , Lesión Pulmonar Aguda/inducido químicamente , Animales , Chalcona/farmacología , Chalcona/uso terapéutico , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Masculino , Inhibidores de Proteínas Quinasas/toxicidad , Quinonas/farmacología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
18.
J Environ Qual ; 42(2): 507-15, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673843

RESUMEN

Livestock slurry is an important source of methane (CH). However, depending on the dry matter content of the slurry, a floating crust may form where methane-oxidizing bacteria (MOB) and CH oxidation activity have been found, suggesting that surface crusts may reduce CH emissions from slurry. However, it is not known how MOB in this environment interact with inorganic nitrogen (N). We studied inhibitory effects of ammonium (NH), nitrate (NO), and nitrite (NO) on potential CH oxidation in a cattle slurry surface crust. At headspace concentrations of 100 and 10,000 ppmv, CH oxidation was assayed at salt concentrations up to 500 mM. First-order rate constants were used to evaluate the strength of inhibition. Nitrite was the most potent inhibitor, reducing methanotrophic activity by up to 70% at only 1 mM NO. Methane-oxidizing bacteria were least sensitive to NO, tolerating up to 30 mM NO at 100 ppmv CH and 50 mM NO at 10,000 ppmv CH without any decline in activity. The inhibition by NH increased progressively, and no range of tolerance was observed. Methane concentrations of 10,000 ppmv resulted in 50- to 100-fold higher specific CH uptake rates than 100 ppmv CH but did not change the inhibition patterns of N salts. In slurry surface crusts, MOB maintained activity at higher concentrations of NH and NO than reported for MOB in soils and sediments, possibly showing adaptation to high N concentrations in the slurry environment. Yet it appears that the effectiveness of surface crusts as CH sinks will depend on inorganic N concentrations.


Asunto(s)
Metano , Nitrógeno , Animales , Oxidación-Reducción
19.
New Phytol ; 186(3): 681-95, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20298483

RESUMEN

Drought induces root death in plants; however, the nature and characteristics of root cell death and its underlying mechanisms are poorly understood. Here, we provide a systematic analysis of cell death in the primary root tips in Arabidopsis during water stress. Root tip cell death occurs when high water deficit is reached. The dying cells were first detected in the apical meristem of the primary roots and underwent active programmed cell death (PCD). Transmission electron microscopic analysis shows that the cells undergoing induced death had unambiguous morphological features of autophagic cell death, including an increase in vacuole size, degradation of organelles, and collapse of the tonoplast and the plasma membrane. The results suggest that autophagic PCD occurs as a response to severe water deficit. Significant accumulation of reactive oxygen species (ROS) was detected in the stressed root tips. Expression of BAX inhibitor-1 (AtBI1) was increased in response to water stress, and atbi1-1 displayed accelerated cell death, indicating that AtBI1 and the endoplasmic reticulum (ER) stress response pathway both modulate water stress-induced PCD. These findings form the basis for further investigations into the mechanisms underlying the PCD and its role in developmental plasticity of root system architecture and subsequent adaptation to water stress.


Asunto(s)
Apoptosis , Arabidopsis/citología , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Meristema/citología , Transducción de Señal , Adaptación Fisiológica , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Fragmentación del ADN , Deshidratación , Retículo Endoplásmico/ultraestructura , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo , Plantones/crecimiento & desarrollo
20.
Plant Mol Biol ; 64(6): 633-44, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17533512

RESUMEN

The nuclear protein ETHYLENE INSENSITIVE2 (EIN2) is a central component of the ethylene signal transduction pathway in plants, and plays an important role in mediating cross-links between several hormone response pathways, including abscisic acid (ABA). ABA mediates stress responses in plants, but there is no report on the role of EIN2 on plant response to salt and osmotic stresses. Here, we show that EIN2 gene regulates plant response to osmotic and salt stress through an ABA-dependent pathway in Arabidopsis. The expression of the EIN2 gene is down-regulated by salt and osmotic stress. An Arabidopsis EIN2 null mutant was supersensitive to both salt and osmotic stress conditions. Disruption of EIN2 specifically altered the expression pattern of stress marker gene RD29B in response to the stresses, but not the stress- or ABA-responsive genes RD29A and RD22, suggesting EIN2 modulates plant stress responses through the RD29B branch of the ABA response. Furthermore, disruption of EIN2 caused substantial increase in ABA. Lastly, our data showed that mutations of other key genes in ethylene pathway also had altered sensitivity to abiotic stresses, indicating that the intact ethylene may involve in the stress response. Taken together, the results identified EIN2 as a cross-link node in ethylene, ABA and stress signaling pathways, and EIN2 is necessary to induce developmental arrest during seed germination, and seedling establishment, as well as subsequent vegetative growth, thereby allowing the survival and growth of plants under the adverse environmental conditions.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Arabidopsis/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Etilenos/química , Perfilación de la Expresión Génica , Manitol/química , Modelos Biológicos , Mutación , Ósmosis , Sales (Química)/metabolismo , Transducción de Señal , Cloruro de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...