Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 99(1)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36427064

RESUMEN

Hydrocarbons may have a natural or anthropogenic origin and serve as a source of carbon and energy for microorganisms in Antarctic soils. Herein, 16S rRNA gene and shotgun sequencing were employed to characterize taxonomic diversity and genetic potential for hydrocarbon degradation of the microbiome from sediments of sites located in two Antarctic islands subjected to different temperatures, geochemical compositions, and levels of presumed anthropogenic impact, named: Crater Lake/Deception Island (pristine area), Whalers Bay and Fumarole Bay/Deception Island (anthropogenic-impacted area), and Hannah Point/Livingston Island (anthropogenic-impacted area). Hydrocarbon concentrations were measured for further correlation analyses with biological data. The majority of the hydrocarbon-degrading genes were affiliated to the most abundant bacterial groups of the microbiome: Proteobacteria and Actinobacteria. KEGG annotation revealed 125 catabolic genes related to aromatic hydrocarbon (styrene, toluene, ethylbenzene, xylene, naphthalene, and polycyclic hydrocarbons) and aliphatic (alkanes and cycloalkanes) pathways. Only aliphatic hydrocarbons, in low concentrations, were detected in all areas, thus not characterizing the areas under study as anthropogenically impacted or nonimpacted. The high richness and abundance of hydrocarbon-degrading genes suggest that the genetic potential of the microbiome from Antarctic sediments for hydrocarbon degradation is driven by natural hydrocarbon occurrence.


Asunto(s)
Microbiota , Hidrocarburos Policíclicos Aromáticos , ARN Ribosómico 16S/genética , Regiones Antárticas , Hidrocarburos/metabolismo , Microbiota/genética , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Islas , Hidrocarburos Policíclicos Aromáticos/metabolismo
2.
An Acad Bras Cienc ; 94(suppl 1): e20210840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35384978

RESUMEN

Currently, antimicrobial resistance has become a global public health problem, which has made the need for new antimicrobial compounds to deal with resistant infections an emergency. However, environments that once offered so many innovative molecules, now already exhaustively exploited, do not meet this need. In this context, a geographically isolated, under-explored and extreme environment, such as Antarctica, which holds organisms with unique physiological and biochemical characteristics, assumes great importance as a potential source of new compounds with antimicrobial activity. In this patent review, we investigate the state of technological development in the field of antimicrobial compounds obtained from Antarctic organisms, highlighting the main countries and researchers active in the field, the species utilized, the compounds obtained, and their possible therapeutic applications. As results, few patent documents were found, however they encompass a wide diversity of compounds and species, indicating a great antimicrobial potential present in Antarctic biota, including compounds active against the most important human pathogenic microorganisms, such as including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp. and multi-resistant Mycobacterium tuberculosis. Furthermore, due to the increasing trend in patent applications, a significant rise in the number of patents in this area is expected in the coming years.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Regiones Antárticas , Antibacterianos/farmacología , Humanos
3.
An Acad Bras Cienc ; 94(suppl 1): e20210540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35293947

RESUMEN

In the Antarctic environment, yeasts are versatile eukaryotes that have shown wide dispersion in different substrates, producing active enzymes in extreme conditions, but their relevance in biotechnological applications is largely unknown. The aim of this study was to evaluate the production of extracellular hydrolases by yeasts isolated from Antarctic lichens and molecularly identify these isolates. From a total of 144 isolates on the screening, 109 (76%) produced at least one of the hydrolases tested, with most activities for proteases 59 (41%), cellulases 58 (40%), esterases 57 (39%), lipases 29 (20%), amylases 23 (16%) and pectinases 20 (14%). Among these isolates, 76 were identified, most belonged to the phylum Basidiomycota (n=73) with the dominance of Vishniacozyma victoriae (n=27), Cystobasidium alpinum (n=3), Mrakia niccombsii (n=3), Cystobasidium laryngis (n=2), Bannozyma yamatoana (n=2), Holtermanniella nyarrowii (n=2), and Glaciozyma martinii (n=2). This study is the first one reporting extracellular enzyme production by yeasts isolated from thallus of the species of Antarctic lichens Lecania brialmontii, Polycauliona candelaria, Usnea capillacea, Cladonia metacorallifera, and Polycauliona regalis. With these data, it's possible to confirm lichens as a source of hydrolase-producing yeasts, reinforcing the potential of these microorganisms in bioprospecting studies of catalytic molecules from polar regions that may be useful in promising biotechnological applications.


Asunto(s)
Líquenes , Hidrólisis , Lipasa , Péptido Hidrolasas , Levaduras
4.
Biotechnol Prog ; 35(1): e2684, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30006968

RESUMEN

The population interest in health products is increasing day-by-day. Thus, the demand for natural products to be added in food and pharmaceutical commodity is also rising. Among these additives, colorants, which provides color to products, can be produced by microorganism through bioprocess. Looking for new source of natural colorants, fungi have been employed to this purpose producing novel and safer natural colorants. So, the main goal of this study was to describe a Talaromyces species able to produce natural colorants and investigate nutritional parameters of colorants production using statistical tool. The taxonomy classified the microorganism as Talaromyces amestolkiae. The statistical design evaluated pH and glucose, meat extract and meat peptone concentration as independent variables, and red colorants production as main response. Under the best condition (g/L: glucose 30, meat extract 1, meat peptone 10, and initial pH of 7.0) an increase of 229% in the red colorant production was achieved as compared with the initial media used. The dried fermented broth containing red colorants showed low cytotoxicity against fibroblasts cells (IC50 > 187.5 g/L) and effective antimicrobial activity against S. aureus (MIC of 2.5 g/L). Thus, T. amestolkiae colorants can be attractive to food and pharmaceutical applications as it does not produce toxic compounds and can promote protection against microorganism contaminants. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2684, 2019.


Asunto(s)
Pigmentos Biológicos/efectos adversos , Pigmentos Biológicos/farmacología , Talaromyces/clasificación , Talaromyces/metabolismo , Fermentación , Fibroblastos/efectos de los fármacos , Filogenia , Pigmentos Biológicos/metabolismo , Staphylococcus aureus/efectos de los fármacos
5.
N Biotechnol ; 30(6): 839-50, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23563183

RESUMEN

The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules.


Asunto(s)
Organismos Acuáticos , Biotecnología , Biotecnología/economía , Biotecnología/métodos , Biotecnología/organización & administración , Biotecnología/tendencias , Europa (Continente)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA