Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Brain ; 146(4): 1357-1372, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36074901

RESUMEN

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.


Asunto(s)
Epilepsia , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Epilepsia/genética , Adenosina Trifosfato
2.
Genet Med ; 24(11): 2351-2366, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36083290

RESUMEN

PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Fenotipo , Trastornos del Neurodesarrollo/genética , Vía de Señalización Wnt/genética , Discapacidad Intelectual/genética , Genómica , beta Catenina/genética
3.
Pediatr Neurol ; 126: 65-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740135

RESUMEN

BACKGROUND: Semaphorins and plexins are ligands and cell surface receptors that regulate multiple neurodevelopmental processes such as axonal growth and guidance. PLXNA3 is a plexin gene located on the X chromosome that encodes the most widely expressed plexin receptor in fetal brain, plexin-A3. Plexin-A3 knockout mice demonstrate its role in semaphorin signaling in vivo. The clinical manifestations of semaphorin/plexin neurodevelopmental disorders have been less widely explored. This study describes the neurological and neurodevelopmental phenotypes of boys with maternally inherited hemizygous PLXNA3 variants. METHODS: Data-sharing through GeneDx and GeneMatcher allowed identification of individuals with autism or intellectual disabilities (autism/ID) and hemizygous PLXNA3 variants in collaboration with their physicians and genetic counselors, who completed questionnaires about their patients. In silico analyses predicted pathogenicity for each PLXNA3 variant. RESULTS: We assessed 14 boys (mean age, 10.7 [range 2 to 25] years) with maternally inherited hemizygous PLXNA3 variants and autism/ID ranging from mild to severe. Other findings included fine motor dyspraxia (92%), attention-deficit/hyperactivity traits, and aggressive behaviors (63%). Six patients (43%) had seizures. Thirteen boys (93%) with PLXNA3 variants showed novel or very low allele frequencies and probable damaging/disease-causing pathogenicity in one or more predictors. We found a genotype-phenotype correlation between PLXNA3 cytoplasmic domain variants (exons 22 to 32) and more severe neurodevelopmental disorder phenotypes (P < 0.05). CONCLUSIONS: We report 14 boys with maternally inherited, hemizygous PLXNA3 variants and a range of neurodevelopmental disorders suggesting a novel X-linked intellectual disability syndrome. Greater understanding of PLXNA3 variant pathogenicity in humans will require additional clinical, computational, and experimental validation.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular/fisiología , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/fisiología , Receptores de Superficie Celular/genética , Semaforinas/fisiología , Adolescente , Adulto , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Transducción de Señal/fisiología , Adulto Joven
4.
Am J Med Genet A ; 185(6): 1700-1711, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33751773

RESUMEN

Over the past decade, pathogenic variants in all members of the ASXL family of genes, ASXL1, ASXL2, and ASXL3, have been found to lead to clinically distinct but overlapping syndromes. Bohring-Opitz syndrome (BOPS) was first described as a clinical syndrome and later found to be associated with pathogenic variants in ASXL1. This syndrome is characterized by developmental delay, microcephaly, characteristic facies, hypotonia, and feeding difficulties. Subsequently, pathogenic variants in ASXL2 were found to lead to Shashi-Pena syndrome (SHAPNS) and in ASXL3 to lead to Bainbridge-Ropers syndrome (BRPS). While SHAPNS and BRPS share many core features with BOPS, there also seem to be emerging clear differences. Here, we present five cases of BOPS, one case of SHAPNS, and four cases of BRPS. By adding our cohort to the limited number of previously published patients, we review the overlapping features of ASXL-related diseases that bind them together, while focusing on the characteristics that make each neurodevelopmental syndrome unique. This will assist in diagnosis of these overlapping conditions and allow clinicians to more comprehensively counsel affected families.


Asunto(s)
Craneosinostosis/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Craneosinostosis/patología , Discapacidades del Desarrollo/epidemiología , Discapacidades del Desarrollo/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Microcefalia , Hipotonía Muscular/epidemiología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Mutación , Fenotipo , Adulto Joven
5.
Genet Med ; 22(2): 389-397, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31388190

RESUMEN

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Ensamble y Desensamble de Cromatina/genética , Discapacidades del Desarrollo/genética , Femenino , Estudios de Asociación Genética , Genotipo , Pérdida Auditiva/genética , Cardiopatías Congénitas/genética , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Anomalías Musculoesqueléticas/genética , Mutación Missense/genética , Fenotipo , Síndrome , Factores de Transcripción/genética
7.
Neurogenetics ; 20(3): 129-143, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31041561

RESUMEN

We previously reported a pathogenic de novo p.R342W mutation in the transcriptional corepressor CTBP1 in four independent patients with neurodevelopmental disabilities [1]. Here, we report the clinical phenotypes of seven additional individuals with the same recurrent de novo CTBP1 mutation. Within this cohort, we identified consistent CtBP1-related phenotypes of intellectual disability, ataxia, hypotonia, and tooth enamel defects present in most patients. The R342W mutation in CtBP1 is located within a region implicated in a high affinity-binding cleft for CtBP-interacting proteins. Unbiased proteomic analysis demonstrated reduced interaction of several chromatin-modifying factors with the CtBP1 W342 mutant. Genome-wide transcriptome analysis in human glioblastoma cell lines expressing -CtBP1 R342 (wt) or W342 mutation revealed changes in the expression profiles of genes controlling multiple cellular processes. Patient-derived dermal fibroblasts were found to be more sensitive to apoptosis during acute glucose deprivation compared to controls. Glucose deprivation strongly activated the BH3-only pro-apoptotic gene NOXA, suggesting a link between enhanced cell death and NOXA expression in patient fibroblasts. Our results suggest that context-dependent relief of transcriptional repression of the CtBP1 mutant W342 allele may contribute to deregulation of apoptosis in target tissues of patients leading to neurodevelopmental phenotypes.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Proteínas de Unión al ADN/genética , Mutación Missense , Adolescente , Oxidorreductasas de Alcohol/metabolismo , Alelos , Apoptosis , Ataxia/complicaciones , Ataxia/genética , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Niño , Preescolar , Cromatina/química , Proteínas de Unión al ADN/metabolismo , Femenino , Fibroblastos/metabolismo , Glioblastoma/genética , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Masculino , Hipotonía Muscular/complicaciones , Hipotonía Muscular/genética , Fenotipo , Unión Proteica , Proteómica , Anomalías Dentarias/complicaciones , Anomalías Dentarias/genética , Adulto Joven
8.
JAMA Netw Open ; 2(4): e192129, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30977854

RESUMEN

Importance: Although genetic testing is important for bringing precision medicine to children with epilepsy, it is unclear what genetic testing strategy is best in maximizing diagnostic yield. Objectives: To evaluate the diagnostic yield of an exome-based gene panel for childhood epilepsy and discuss the value of follow-up testing. Design, Setting, and Participants: A case series study was conducted on data from clinical genetic testing at Children's Hospital of Philadelphia was conducted from September 26, 2016, to January 8, 2018. Initial testing targeted 100 curated epilepsy genes for sequence and copy number analysis in 151 children with idiopathic epilepsy referred consecutively by neurologists. Additional genetic testing options were offered afterward. Exposures: Clinical genetic testing. Main Outcomes and Measures: Molecular diagnostic findings. Results: Of 151 patients (84 boys [55.6%]; median age, 4.2 years [interquartile range, 1.4-8.7 years]), 16 children (10.6%; 95% CI, 6%-16%) received a diagnosis after initial panel analysis. Parental testing for 15 probands with inconclusive results revealed de novo variants in 7 individuals (46.7%), resulting in an overall diagnostic yield of 15.3% (23 of 151; 95% CI, 9%-21%). Twelve probands with nondiagnostic panel findings were reflexed to exome sequencing, and 4 were diagnostic (33.3%; 95% CI, 6%-61%), raising the overall diagnostic yield to 17.9% (27 of 151; 95% CI, 12%-24%). The yield was highest (17 of 44 [38.6%; 95% CI, 24%-53%]) among probands with epilepsy onset in infancy (age, 1-12 months). Panel diagnostic findings involved 16 genes: SCN1A (n = 4), PRRT2 (n = 3), STXBP1 (n = 2), IQSEC2 (n = 2), ATP1A2, ATP1A3, CACNA1A, GABRA1, KCNQ2, KCNT1, SCN2A, SCN8A, DEPDC5, TPP1, PCDH19, and UBE3A (all n = 1). Exome sequencing analysis identified 4 genes: SMC1A, SETBP1, NR2F1, and TRIT1. For the remaining 124 patients, analysis of 13 additional genes implicated in epilepsy since the panel was launched in 2016 revealed promising findings in 6 patients. Conclusions and Relevance: Exome-based targeted panels appear to enable rapid analysis of a preselected set of genes while retaining flexibility in gene content. Successive genetic workup should include parental testing of select probands with inconclusive results and reflex to whole-exome trio analysis for the remaining nondiagnostic cases. Periodic reanalysis is needed to capture information in newly identified disease genes.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/genética , Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Tripeptidil Peptidasa 1
9.
Hum Genet ; 137(5): 375-388, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29740699

RESUMEN

Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes.


Asunto(s)
Secuencia de Aminoácidos , Complejo Mediador/genética , Mutación Missense , Trastornos del Neurodesarrollo/genética , Eliminación de Secuencia , Adulto , Niño , Preescolar , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Femenino , Humanos , Masculino , Complejo Mediador/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Iniciación de la Transcripción Genética , Ubiquitinación/genética , Reino Unido
10.
Cell ; 172(5): 924-936.e11, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474920

RESUMEN

Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.


Asunto(s)
Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia/genética , Mutación/genética , Proteínas de Unión al ARN/genética , Convulsiones/genética , Adolescente , Adulto , Edad de Inicio , Anciano de 80 o más Años , Animales , Secuencia de Bases , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Evolución Molecular , Femenino , Eliminación de Gen , Células HEK293 , Humanos , Lactante , Masculino , Ratones , Persona de Mediana Edad , Mutación Missense/genética , Neuronas/metabolismo , Neuronas/patología , Linaje , Estabilidad Proteica , Convulsiones/diagnóstico por imagen
11.
Mol Genet Metab ; 122(3): 130-133, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28919002

RESUMEN

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder leading to the accumulation of very long chain fatty acids (VLCFA) due to a mutation in the ABCD1 gene. ABCD1 mutations lead to a variety of phenotypes, including cerebral X-ALD and adrenomyeloneuropathy (AMN) in affected males and 80% of carrier females. There is no definite genotype-phenotype correlation with intrafamilial variability. Cerebral X-ALD typically presents in childhood, but can also present in juveniles and adults. The most affected tissues are the white matter of the brain and adrenal cortex. MRI demonstrates a characteristic imaging appearance in cerebral X-ALD that is used as a diagnostic tool. OBJECTIVES: We aim to correlate a mutation in the ABCD1 gene in a chimpanzee to the human disease X-ALD based on MRI features, neurologic symptoms, and plasma levels of VLCFA. METHODS: Diagnosis of X-ALD made using MRI, blood lipid profiling, and DNA sequencing. RESULTS: An 11-year-old chimpanzee showed remarkably similar features to juvenile onset cerebral X-ALD in humans including demyelination of frontal lobes and corpus callosum on MRI, elevated plasma levels of C24:0 and C26:0, and identification of the c.1661G>A ABCD1 variant. CONCLUSIONS: This case study presents the first reported case of a leukodystrophy in a great ape, and underscores the fidelity of MRI pattern recognition in this disorder across species.


Asunto(s)
Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Adrenoleucodistrofia/genética , Encéfalo/fisiopatología , Pan troglodytes/genética , Adrenoleucodistrofia/diagnóstico por imagen , Adulto , Edad de Inicio , Animales , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Coenzima A Ligasas/sangre , Enfermedades Desmielinizantes , Femenino , Lóbulo Frontal/patología , Estudios de Asociación Genética , Humanos , Lípidos/sangre , Imagen por Resonancia Magnética , Masculino , Mutación , Fenotipo , Análisis de Secuencia de ADN/métodos
12.
Mol Genet Genomic Med ; 4(6): 599-603, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27896282

RESUMEN

BACKGROUND: Microtubules are dynamic polymers of α/ß tubulin heterodimers that play a critical role in cerebral cortical development, by regulating neuronal migration, differentiation, and morphogenesis. Mutations in genes that encode either α- or ß-tubulin or a spectrum of proteins involved in the regulation of microtubule dynamics lead to clinically devastating malformations of cortical development, including lissencephaly. METHODS: This is a single case report or a patient with lissencephaly, developmental delay, nystagmus, persistent hyperplastic primary vitreous, and infantile spasms, and undertook a neurogenetic workup. We include studies of mutant function in Escherichia coli and HeLa cells. RESULTS: The patient was found to have a novel de novo mutation in kinesin family member 2A (KIF2A). This mutation results in a substitution of isoleucine at a highly conserved threonine residue within the ATP-binding domain. The KIF2A p.Thr320Ile mutant protein exhibited abnormal solubility, and KIF2A p.Thr320Ile overexpression in cultured cells led to the formation of aberrant microtubule networks. CONCLUSION: Findings support the pathogenic link between KIF2A mutation and lissencephaly, and expand the range of presentation to include infantile spasms and congenital anomalies.

13.
Am J Med Genet A ; 167A(12): 3091-5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26198585

RESUMEN

Discordance between clinical phenotype and genotype has multiple causes, including mosaicism. Phenotypes can be modified due to tissue distribution, or the presence of multiple abnormal cell lines with different genomic contributions. We have studied a 20-month-old female whose main phenotypes were failure to thrive, developmental delay, and patchy skin pigmentation. Initial chromosome and SNP microarray analysis of her blood revealed a non-mosaic ∼24 Mb duplication of 15q25.1q26.3 resulting from the unbalanced translocation of terminal 15q to the short arm of chromosome 15. The most common feature associated with distal trisomy 15q is prenatal and postnatal overgrowth, which was not consistent with this patient's phenotype. The phenotypic discordance, in combination with the patchy skin pigmentation, suggested the presence of mosaicism. Further analysis of skin biopsies from both hyper- and hypopigmented regions confirmed the presence of an additional cell line with the short arm of chromosome X deleted and replaced by the entire long arm of chromosome 15. The Xp deletion, consistent with a variant Turner Syndrome diagnosis, better explained the patient's phenotype. Parental studies revealed that the alterations in both cell lines were de novo and the duplicated distal 15q and the deleted Xp were from different parental origins, suggesting a mitotic event. The possible mechanism for the occurrence of two mutually exclusive structural rearrangements with both involving the long arm of chromosome 15 is discussed.


Asunto(s)
Anomalías Múltiples/genética , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 15/genética , Cromosomas Humanos X/genética , Duplicación de Gen , Mosaicismo/embriología , Trisomía/genética , Anomalías Múltiples/diagnóstico , Trastornos de los Cromosomas/diagnóstico , Hibridación Genómica Comparativa , Femenino , Genotipo , Humanos , Hibridación Fluorescente in Situ , Lactante , Fenotipo , Diagnóstico Prenatal , Pronóstico , Trisomía/diagnóstico
14.
Am J Hum Genet ; 96(3): 507-13, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25728777

RESUMEN

Through a multi-center collaboration study, we here report six individuals from five unrelated families, with mutations in KAT6A/MOZ detected by whole-exome sequencing. All five different de novo heterozygous truncating mutations were located in the C-terminal transactivation domain of KAT6A: NM_001099412.1: c.3116_3117 delCT, p.(Ser1039∗); c.3830_3831insTT, p.(Arg1278Serfs∗17); c.3879 dupA, p.(Glu1294Argfs∗19); c.4108G>T p.(Glu1370∗) and c.4292 dupT, p.(Leu1431Phefs∗8). An additional subject with a 0.23 MB microdeletion including the entire KAT6A reading frame was identified with genome-wide array comparative genomic hybridization. Finally, by detailed clinical characterization we provide evidence that heterozygous mutations in KAT6A cause a distinct intellectual disability syndrome. The common phenotype includes hypotonia, intellectual disability, early feeding and oromotor difficulties, microcephaly and/or craniosynostosis, and cardiac defects in combination with subtle facial features such as bitemporal narrowing, broad nasal tip, thin upper lip, posteriorly rotated or low-set ears, and microretrognathia. The identification of human subjects complements previous work from mice and zebrafish where knockouts of Kat6a/kat6a lead to developmental defects.


Asunto(s)
Histona Acetiltransferasas/genética , Discapacidad Intelectual/genética , Adolescente , Niño , Preescolar , Hibridación Genómica Comparativa , Exoma , Femenino , Eliminación de Gen , Sitios Genéticos , Heterocigoto , Histona Acetiltransferasas/metabolismo , Humanos , Lactante , Masculino , Microcefalia/genética , Mutación , Linaje , Fenotipo
15.
Am J Med Genet A ; 161A(8): 1929-39, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23804593

RESUMEN

Here we describe three subjects with mosaic genome-wide paternal uniparental isodisomy (GWpUPD) each of whom presented initially with overgrowth, hemihyperplasia (HH), and hyperinsulinism (HI). Due to the severity of findings and the presence of additional features, SNP array testing was performed, which demonstrated mosaic GWpUPD. Comparing these individuals to 10 other live-born subjects reported in the literature, the predominant phenotype is that of pUPD11 and notable for a very high incidence of tumor development. Our subjects developed non-metastatic tumors of the adrenal gland, kidney, and/or liver. All three subjects had pancreatic hyperplasia resulting in HI. Notably, our subjects to date display minimal features of other diseases associated with paternal UPD loci. Both children who survived the neonatal period have displayed near-normal cognitive development, likely due to a favorable tissue distribution of the mosaicism. To understand the range of UPD mosaicism levels, we studied multiple tissues using SNP array analysis and detected levels of 5-95%, roughly correlating with the extent of tissue involvement. Given the rapidity of tumor growth and the difficulty distinguishing malignant and benign tumors in these GWpUPD subjects, we have utilized increased frequency of ultrasound (US) and alpha-fetoprotein (AFP) screening in the first years of life. Because of a later age of onset of additional tumors, continued tumor surveillance into adolescence may need to be considered in these rare patients.


Asunto(s)
Cromosomas Humanos Par 11/genética , Genoma Humano , Hiperbilirrubinemia Hereditaria/genética , Hiperinsulinismo/genética , Hiperplasia/genética , Mosaicismo , Neoplasias/genética , Disomía Uniparental/genética , Adulto , Células Cultivadas , Preescolar , Aberraciones Cromosómicas , Hibridación Genómica Comparativa , Femenino , Genotipo , Humanos , Hiperbilirrubinemia Hereditaria/patología , Hiperinsulinismo/patología , Hiperplasia/patología , Lactante , Imagen por Resonancia Magnética , Neoplasias/patología , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Disomía Uniparental/patología , alfa-Fetoproteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA