Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Chem Biol ; 5(6): 518-529, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846073

RESUMEN

The progesterone receptor (PR) belongs to the steroid receptor family of ligand-regulated transcription factors, controlling genes important for development, metabolism, and reproduction. Understanding how diverse ligands bind and modulate PR activity will illuminate the design of ligands that control PR-driven signaling pathways. Here, we use molecular dynamics simulations to investigate how PR dynamics are altered by functionally diverse ligands. Using a library of 33 steroidal ligands that range from inactive to EC50 < 0.1 nM, we reveal an unexpected evolutionary basis for the wide gamut of activation. While other oxosteroid receptors employ an evolutionarily conserved mechanism dependent on a hydrogen bond between the receptor and ligand, extant PR has evolved a preference for activation that is not reliant on this polar interaction. We demonstrate that potent ligands utilize the modern PR mechanism while weaker ligands coopt the defunct ancestral mechanism by forming hydrogen bonds with Asn719. Based on their structures and dynamic signatures, ligands partition into four classes (inactive, weak, moderate and high potency) that interact distinctly with the PR binding pocket. Further, we use luciferase reporter assays and PR mutants to probe the roles of pocket residues in mediating distinct PR mechanisms. This combination of MD simulations and in vitro studies provide insight into how the evolutionary history of PR shapes its response to diverse ligands.

2.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38854087

RESUMEN

Nuclear receptors are multidomain transcription factors whose full-length quaternary architecture is poorly described and understood. Most nuclear receptors bind DNA as heterodimers or homodimers, which could encompass a variety of arrangements of the individual domains. Only a handful of experimental structures currently exist describing these architectures. Given that domain interactions and protein-DNA interactions within transcriptional complexes are tightly linked to function, understanding the arrangement of nuclear receptor domains on DNA is of utmost importance. Here, we employ modeling and molecular dynamics (MD) simulations to describe the structure of the full-length farnesoid X receptor (FXR) and retinoid X receptor alpha (RXR) heterodimer bound to DNA. Using over 100 microseconds of atomistic MD simulations, we characterize the dynamic behavior of eight FXR-RXR-DNA complexes, showing that these complexes support a range of quaternary architectures. We reveal the role of DNA binding and the hinge linkers in diversifying domain arrangements, roles that have been hard to appreciate previously due to experimental limitations in studying the flexible hinge. These studies provide a much-needed framework that will enable the field to obtain a complete understanding of nuclear receptor quaternary architectures.

3.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405809

RESUMEN

Nuclear receptors are ligand-induced transcription factors that bind directly to target genes and regulate their expression. Ligand binding initiates conformational changes that propagate to other domains, allosterically regulating their activity. The nature of this interdomain communication in nuclear receptors is poorly understood, largely owing to the difficulty of experimentally characterizing full-length structures. We have applied computational modeling approaches to describe and study the structure of the full length farnesoid X receptor (FXR), approximated by the DNA binding domain (DBD) and ligand binding domain (LBD) connected by the flexible hinge region. Using extended molecular dynamics simulations (> 10 microseconds) and enhanced sampling simulations, we provide evidence that ligands selectively induce domain rearrangement, leading to interdomain contact. We use protein-protein interaction assays to provide experimental evidence of these interactions, identifying a critical role of the hinge in mediating interdomain contact. Our results illuminate previously unknown aspects of interdomain communication in FXR and provide a framework to enable characterization of other full length nuclear receptors.

4.
J Chem Inf Model ; 63(2): 571-582, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36594606

RESUMEN

Allosteric pathways in proteins describe networks comprising amino acid residues which may facilitate the propagation of signals between distant sites. Through inter-residue interactions, dynamic and conformational changes can be transmitted from the site of perturbation to an allosteric site. While sophisticated computational methods have been developed to characterize such allosteric pathways linking specific sites on proteins, few attempts have been made to apply these approaches toward identifying new allosteric sites. Here, we use molecular dynamics simulations and suboptimal path analysis to discover new allosteric networks in steroid receptors with a focus on evolutionarily conserved pathways. Using modern receptors and a reconstructed ancestral receptor, we identify networks connecting several sites to the activation function surface 2 (AF-2), the site of coregulator recruitment. One of these networks is conserved across the entire family, connecting a predicted allosteric site located between helices 9 and 10 of the ligand-binding domain. We investigate the basis of this conserved network as well as the importance of this site, discovering that the site lies in a region of the ligand-binding domain characterized by conserved inter-residue contacts. This study suggests an evolutionarily importance of the helix 9-helix 10 site in steroid receptors and identifies an approach that may be applied to discover previously unknown allosteric sites in proteins.


Asunto(s)
Proteínas , Receptores de Esteroides , Regulación Alostérica , Ligandos , Proteínas/química , Sitio Alostérico , Simulación de Dinámica Molecular
5.
PLoS Pathog ; 18(10): e1010887, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36223427

RESUMEN

Plasmodium parasites are reliant on the Apicomplexan AP2 (ApiAP2) transcription factor family to regulate gene expression programs. AP2 DNA binding domains have no homologs in the human or mosquito host genomes, making them potential antimalarial drug targets. Using an in-silico screen to dock thousands of small molecules into the crystal structure of the AP2-EXP (Pf3D7_1466400) AP2 domain (PDB:3IGM), we identified putative AP2-EXP interacting compounds. Four compounds were found to block DNA binding by AP2-EXP and at least one additional ApiAP2 protein. Our top ApiAP2 competitor compound perturbs the transcriptome of P. falciparum trophozoites and results in a decrease in abundance of log2 fold change > 2 for 50% (46/93) of AP2-EXP target genes. Additionally, two ApiAP2 competitor compounds have multi-stage anti-Plasmodium activity against blood and mosquito stage parasites. In summary, we describe a novel set of antimalarial compounds that interact with AP2 DNA binding domains. These compounds may be used for future chemical genetic interrogation of ApiAP2 proteins or serve as starting points for a new class of antimalarial therapeutics.


Asunto(s)
Antimaláricos , Proteínas de Unión al ADN , Plasmodium , Humanos , Antimaláricos/farmacología , Antimaláricos/metabolismo , ADN/metabolismo , Plasmodium/efectos de los fármacos , Plasmodium/genética , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ADN/metabolismo
7.
Biophys J ; 120(20): 4557-4574, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34478698

RESUMEN

Amphiphilic ß-peptides, which are synthetically designed short-chain helical foldamers of ß-amino acids, are established potent biomimetic alternatives of natural antimicrobial peptides. An intriguing question is how the distinct molecular architecture of these short-chain and rigid synthetic peptides translates to its potent membrane-disruption ability. Here, we address this question via a combination of all-atom and coarse-grained molecular dynamics simulations of the interaction of mixed phospholipid bilayer with an antimicrobial 10-residue globally amphiphilic helical ß-peptide at a wide range of concentrations. The simulation demonstrates that multiple copies of this synthetic peptide, initially placed in aqueous solution, readily self-assemble and adsorb at membrane interface. Subsequently, beyond a threshold peptide/lipid ratio, the surface-adsorbed oligomeric aggregate moves inside the membrane and spontaneously forms stable water-filled transmembrane pores via a cooperative mechanism. The defects induced by these pores lead to the dislocation of interfacial lipid headgroups, membrane thinning, and substantial water leakage inside the hydrophobic core of the membrane. A molecular analysis reveals that despite having a short architecture, these synthetic peptides, once inside the membrane, would stretch themselves toward the distal leaflet in favor of potential contact with polar headgroups and interfacial water layer. The pore formed in coarse-grained simulation was found to be resilient upon structural refinement. Interestingly, the pore-inducing ability was found to be elusive in a non-globally amphiphilic sequence isomer of the same ß-peptide, indicating strong sequence dependence. Taken together, this work puts forward key perspectives of membrane activity of minimally designed synthetic biomimetic oligomers relative to the natural antimicrobial peptides.


Asunto(s)
Membrana Dobles de Lípidos , Péptidos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Agua
8.
J Mol Model ; 25(9): 277, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31456056

RESUMEN

Immunoreceptors are TM complexes that consist of separate ligand-binding and signal-transducing modules. Mounting evidence suggests that interactions with the local environment may influence the architecture of these TM domains, which assemble via crucial sets of conserved ionisable residues, and also control the peripheral association of immunoreceptor tyrosine-based activation motifs (ITAMs) whose phosphorylation triggers cytoplasmic signalling cascades. We now report a molecular dynamics (MD) simulation study of the archetypal T cell receptor (TCR) and its cluster of differentiation 3 (CD3) signalling partners, along with the analogous DNAX-activation protein of 12 kDa (DAP12)/natural killer group 2C (NKG2C) complex. Based on > 15 µs of explicitly solvated, atomic-resolution sampling, we explore molecular aspects of immunoreceptor complex stability in different functionally relevant states. A novel alchemical approach is used to simulate the cytoplasmic CD3ε tail at different depths within lipid bilayer models, revealing that the conformation and cytoplasmic exposure of ITAMs are highly sensitive to local enrichment by different lipid species and to phosphorylation. Furthermore, simulations of the TCR and DAP12 TM domains in various states of oligomerisation suggest that, during the early stages of assembly, stable membrane insertion is facilitated by the interfacial lipid/solvent environment and/or partial ionisation of charged residues. Collectively, our results indicate that the architecture and mechanisms of signal transduction in immunoreceptor complexes are tightly regulated by interactions with the microenvironment.


Asunto(s)
Complejo CD3/metabolismo , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Dominios Proteicos , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejo CD3/química , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Receptores de Antígenos de Linfocitos T/química
9.
Methods Mol Biol ; 2003: 1-30, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31218611

RESUMEN

Lipid membranes play a crucial role in living systems by compartmentalizing biological processes and forming a barrier between these processes and the environment. Naturally, a large apparatus of biomolecules is responsible for construction, maintenance, transport, and degradation of these lipid barriers. Additional classes of biomolecules are tasked with transport of specific substances or transduction of signals from the environment across lipid membranes. In this article, we intend to describe a set of techniques that enable one to build accurate models of lipid systems and their associated proteins, and to simulate their dynamics over a variety of time and length scales. We discuss the methods and challenges that allow us to derive structural, mechanistic, and thermodynamic information from these models. We also show how these models have recently been applied in research to study some of the most complex lipid-protein systems to date, including bacterial and viral envelopes, neuronal membranes, and mammalian signaling systems.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Membrana Celular/metabolismo , Simulación de Dinámica Molecular , Transducción de Señal/fisiología , Termodinámica
10.
ACS Biomater Sci Eng ; 5(9): 4657-4670, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-33448838

RESUMEN

Self-assembled peptide nanofibers can form biomimetic hydrogels at physiological pH and ionic strength through noncovalent and reversible interactions. Inspired by natural antimicrobial peptides, we designed a class of cationic amphiphilic self-assembled peptides (CASPs) that self-assemble into thixotropic nanofibrous hydrogels. These constructs employ amphiphilicity and high terminal charge density to disrupt bacterial membranes. Here, we focus on three aspects of the self-assembly of these hydrogels: (a) the material properties of the individual self-assembled nanofibers, (b) emergence of bulk-scale elasticity in the nanofibrous hydrogel, and (c) trade-off between the desirable material properties and antimicrobial efficacy. The design of the supramolecular nanofibers allows for higher-order noncovalent ionic cross-linking of the nanofibers into a viscoelastic network. We determine the stiffness of the self-assembled nanofibers via the peak force quantitative nanomechanical atomic force microscopy and the bulk-scale rheometry. The storage moduli depend on peptide concentration, ionic strength, and concentration of multivalent ionic cross-linker. CASP nanofibers are demonstrated to be effective against Pseudomonas aeruginosa colonies. We use nanomechanical analysis and microsecond-time scale coarse-grained simulation to elucidate the interaction between the peptides and bacterial membranes. We demonstrate that the membranes stiffen, contract, and buckle after binding to peptide nanofibers, allowing disruption of osmotic equilibrium between the intracellular and extracellular matrix. This is further associated with dramatic changes in cell morphology. Our studies suggest that self-assembled peptide nanofibrils can potentially acts as membrane-disrupting antimicrobial agents, which can be formulated as injectable hydrogels with tunable material properties.

11.
Sci Rep ; 7(1): 6892, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761062

RESUMEN

We performed integrative analysis of genes associated with type 2 Diabetes Mellitus (T2DM) associated complications by automated text mining with manual curation and also gene expression analysis from Gene Expression Omnibus. They were analysed for pathogenic or protective role, trends, interaction with risk factors, Gene Ontology enrichment and tissue wise differential expression. The database T2DiACoD houses 650 genes, and 34 microRNAs associated with T2DM complications. Seven genes AGER, TNFRSF11B, CRK, PON1, ADIPOQ, CRP and NOS3 are associated with all 5 complications. Several genes are studied in multiple years in all complications with high proportion in cardiovascular (75.8%) and atherosclerosis (51.3%). T2DM Patients' skeletal muscle tissues showed high fold change in differentially expressed genes. Among the differentially expressed genes, VEGFA is associated with several complications of T2DM. A few genes ACE2, ADCYAP1, HDAC4, NCF1, NFE2L2, OSM, SMAD1, TGFB1, BDNF, SYVN1, TXNIP, CD36, CYP2J2, NLRP3 with details of protective role are catalogued. Obesity is clearly a dominant risk factor interacting with the genes of T2DM complications followed by inflammation, diet and stress to variable extents. This information emerging from the integrative approach used in this work could benefit further therapeutic approaches. The T2DiACoD is available at www.http://t2diacod.igib.res.in/ .


Asunto(s)
Bases de Datos Genéticas , Complicaciones de la Diabetes/genética , Diabetes Mellitus Tipo 2/complicaciones , Redes Reguladoras de Genes , Polimorfismo de Nucleótido Simple , Curaduría de Datos , Minería de Datos , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Internet , Músculo Esquelético/metabolismo , Especificidad de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...