Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18827, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138257

RESUMEN

Endometriosis is a common condition that affects 5% to 10% of women during their reproductive years, although the aetiology and pathophysiology are still unknown. This study aimed to create an endometriosis model in rats to investigate the efficacy of natural and synthetic medications in treating endometriosis. An in vivo endometriotic model was established using a surgical induction method and the endocrine-disrupting drug diethylstilbestrol (DES). In brief, the experiment is categorised into three different groups. Each group contains five rats. The first group had no surgery, while in the in the second group of rats (n = 5), two small tissue grafts were fixed at the right and left walls of the abdomen. But in the in the third group of rats (n = 5), two small pieces of tissue have been grafted on the right and left abdomen walls by surgically along with DES treatments. Noninvasive photoacoustic imaging (PAI) was employed in the study to measure factors such as haemoglobin levels, oxygen saturation, and the size of endometriotic lesions. Histopathological analysis was carried out utilising staining techniques such as Hematoxylin and Eosin, Masson's Trichrome, and Periodic Acid Schiff, as well as immunohistochemistry with marker antibodies. Molecular markers in uterine tissue were examined using Western blots and real-time PCR. The developed endometriosis rat model showed a significant increase in the expression of anti-apoptotic Bcl-2, angiogenic marker VEGF and pro-inflammatory (COX-2 and IL-6) protein markers. In contrast to the control group, the treatment group had considerably lower Caspase-3 expression levels. Photoacoustic imaging (PAI) data demonstrated a constant increase in lesion size, as well as a decrease in oxygen saturation levels. The findings suggest that the in vivo endometriosis rat model may accurately assess the efficacy of natural or synthetic endometriosis treatments. This model may help in the improvement of disease understanding and the development of targeted therapeutic drugs.


Asunto(s)
Modelos Animales de Enfermedad , Endometriosis , Animales , Endometriosis/patología , Endometriosis/metabolismo , Femenino , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Interleucina-6/metabolismo , Dietilestilbestrol/farmacología , Ratas Sprague-Dawley , Endometrio/patología , Endometrio/metabolismo , Endometrio/efectos de los fármacos , Caspasa 3/metabolismo
2.
Ther Deliv ; : 1-24, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949622

RESUMEN

Aim: The current study aims to develop and optimize microemulsions (ME) through Quality-by-Design (QbD) approach to improve the aqueous solubility and dissolution of poorly water-soluble drug disulfiram (DSF) for repurposing in melanoma and breast cancer therapy. Materials & methods: The ME was formulated using Cinnamon oil & Tween® 80, statistically optimized using a D-optimal mixture design-based QbD approach to develop the best ME with low vesicular size (Zavg) and polydispersity index (PDI). Results: The DSF-loaded optimized stable ME showed enhanced dissolution, in-vitro cytotoxicity and improved cellular uptake in B16F10 and MCF-7 cell lines compared with their unformulated free DSF. Conclusion: Our investigations suggested the potential of the statistically designed DSF-loaded optimized ME for repurposing melanoma and breast cancer therapy.


Identifying new medicinal uses of an existing marketed drug can save both money and time in the process of drug development. From many of the recently reported literature, disulfiram (a drug used for alcoholism) has shown its activity against various cancers, including breast and skin cancer. However, it possesses poor water solubility and absorption, leading to low medicinal activity. The current study aims to develop a novel microemulsion dosage form through a statistical design approach to enhance the solubility, dissolution and anticancer activity for repurposing in melanoma and breast cancer treatment. The novel microemulsion was prepared, statistically analyzed and optimized. The optimized microemulsion was found to be stable and showed improved medicinal activity against breast and skin cancer compared with the pure drug. Our research showed the potential of the developed microemulsion of the disulfiram for its new therapeutic use in skin cancer and breast cancer.

3.
Gene ; 927: 148704, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885821

RESUMEN

The current study sought to investigate the associations of common genetic risk variants with gestational diabetes mellitus (GDM) risk in the north Indian population and to evaluate their utility in identifying GDM cases. A case-control study, including 300 pregnant women, was included, and clinical and pathological information was collected. The amplification-refractory mutation system (ARMS) was used for genotyping four single nucleotide polymorphisms (SNPs), namely FTO (rs9939609), PPARG2 (rs1801282), SLC30A8 (rs13266634), and TCF7L2 (rs12255372). The odds ratio and confidence interval were determined for each SNP in different genetic models. Further, attributable risk, population penetrance, and relative risk were also calculated. The risk allele A of FTO (rs9939609) poses a two times higher risk of GDM (p = 0.02, OR = 2.5). The CG and GG genotypes of PPARG2 (rs1801282) have half a lower risk of GDM. In SLC30A8 (rs13266634), the recessive model analysis showed a two times higher risk of having GDM, while the recessive model (TT vs. GG + GT) analysis in TCF7L2 (rs12255372) indicates a lower risk of GDM. Finally, the relative risk, population penetrance, and attributable risk for risk allele in all four variants was higher in GDM mothers. All four polymorphisms were found to be significantly associated with BMI, HbA1c, and insulin. Our study first time confirmed a significant association with GDM for four variants, FTO, PPARG2, SLC30A8, and TCF7L2, in the North Indian population.


Asunto(s)
Diabetes Gestacional , Predisposición Genética a la Enfermedad , Insulina , Polimorfismo de Nucleótido Simple , Proteína 2 Similar al Factor de Transcripción 7 , Transportador 8 de Zinc , Humanos , Femenino , Diabetes Gestacional/genética , Embarazo , Adulto , Estudios de Casos y Controles , Proteína 2 Similar al Factor de Transcripción 7/genética , Insulina/metabolismo , Transportador 8 de Zinc/genética , Transportador 8 de Zinc/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , PPAR gamma/genética , India
4.
Opt Lett ; 49(8): 2185-2188, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621107

RESUMEN

Optoelectronic chromatic dispersion (OED) is a significant source of effective chromatic dispersion in photodiodes. We present an experimental and theoretical study of OED in PN-type Si photodiodes and photovoltaic cells and report on a very large effective chromatic dispersion in these devices. As measured with the modulation phase-shift technique at a frequency of 4 kHz for these slow devices, the OED spectral sensitivity for a commercial Si photodiode is approx. 0.02 deg/nm in the 720-850 nm wavelength band and increases to 0.25 deg/nm at λ = 1µm. For a Si photovoltaic cell, the OED is approx. 0.09 deg/nm in this spectral region. These values translate into an effective chromatic dispersion parameter of approx. 1012ps/(n m ×k m) for these sub-millimeter device lengths, which is over eight orders of magnitude larger than high-dispersion materials such as chalcogenide glass. The enormous dispersion in these sub-millimeter sized silicon-based devices can be utilized for on-chip optoelectronic sensors such as wavelength monitoring and spectroscopy. The substantial OED of photovoltaic cells can be utilized for the characterization and optimization and new applications for optical sensing with these self-powered devices.

5.
Front Genet ; 15: 1330807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572418

RESUMEN

Uterine leiomyoma, commonly referred to as fibroids, is a benign tumor that develops in the muscular wall of the uterus. These growths are non-cancerous and can vary in size, ranging from tiny nodules to larger masses. Uterine leiomyomas often occur during a woman's reproductive years and can lead to symptoms such as heavy menstrual bleeding, pelvic pain, and pressure on nearby organs. While the exact cause is not fully understood, hormonal factors, particularly estrogen and progesterone, are believed to play a role in their development. The exploration of connections between genetic variants and uterine leiomyoma has captivated scientific attention for numerous years. The results from investigations remain a subject of intrigue within the scientific community. To date, the findings regarding the relationships between single nucleotide polymorphisms (SNPs) and uterine leiomyoma have exhibited some inconsistencies. However, amidst these inconsistencies, several promising outcomes have emerged that hold the potential to shape future research endeavors. These promising leads could pave the way for the development of innovative targeted therapies and novel prognostic biomarkers. This review specifically centers on accentuating the existing literature data concerning genetic variants that have been explored for their potential connections to uterine leiomyoma. Additionally, it underscores the prospects of employing genetic variations as diagnostic and prognostic biomarkers for individuals diagnosed with uterine leiomyoma.

6.
Am J Reprod Immunol ; 91(2): e13825, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38389407

RESUMEN

BACKGROUND: To achieve oocyte competence for successful fertilization, bidirectional communication between oocyte and granulosa cells is crucial. The acquisition of meiotic competency in oocyte is facilitated by various regulatory genes however, expression pattern of these genes is not well documented during meiotic transition from Metaphase-I to Metaphase-II stage. Therefore, the present research analyzed the expression pattern of regulatory genes that are involved in the transition from M-I to M-II stages in rat oocyte. METHODS: The analysis of the data was conducted by applying an array of bioinformatic tools. The investigation of gene group interactions was carried out by employing the STRING database, which relies on co-expression information. The gene ontology (GO) analysis was performed utilizing the comparative GO database. Functional annotation for GO and pathway enrichment analysis were performed for genes involved in networking. The GO obtained through computational simulations was subsequently validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. RESULTS: The findings of our study suggest that there is a distinct gene expression pattern in both the oocyte and granulosa cells. This pattern indicates that oocyte-secreted factors, such as BMP15 and GDF9, play a crucial role in regulating the progression of the meiotic cell cycle from the M-I to M-II stages. We have also examined the level of mRNA expression of genes including CYP11A1, CYP19A1, and STAR, which are crucial for the steroidogenesis. CONCLUSIONS: It is fascinating to observe that the oscillatory pattern of specific key genes may hold significance in the process of in vitro oocyte maturation, specifically during the transition from the M-I to M-II stage. It might be useful for determining biomarker genes and potential pathways that play a role in attaining oocyte competency, thereby aiding in the assessment of oocyte quality for the purpose of achieving successful fertilization.


Asunto(s)
Oocitos , Ovario , Femenino , Animales , Ratas , Oocitos/fisiología , Células de la Granulosa/metabolismo
7.
Indian J Dermatol ; 68(5): 558-562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099104

RESUMEN

Pigmentary mosaicism (PM) is a clinical condition of dyspigmentation with chromosomal abnormality. PM presents with both cutaneous and extracutaneous manifestation. Hypomelanosis of Ito and linear and whorled nevoid hypermelanosis are syndromic disorders in which PM is one of the manifestations. We present a case of a 1-year-old child with a unique constellation of symptoms of unilateral syndactyly, hemihypertrophy, and skin hyperpigmentation. Karyotype from peripheral blood was normal. We found genetic aberration (mosaic 2q35 deletion) in the present case from fibroblast cultured from the affected area. This unique constellation of symptoms was previously reported once but genetic study was not done from the affected tissue. This case highlights the need of considering fibroblast culture-based genetic study rather than doing simple karyotype from peripheral blood. Genetic study also established the molecular basis of symptoms in the above case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...