Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(6): 2555-2569, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594216

RESUMEN

Gibberellic acid (GA) plays a central role in many plant developmental processes and is crucial for crop improvement. DELLA proteins, the core suppressors in the GA signaling pathway, are degraded by GA via the 26S proteasomal pathway to release the GA response. However, little is known about the phosphorylation-mediated regulation of DELLA proteins. In this study, we combined GA response assays with protein-protein interaction analysis to infer the connection between Arabidopsis thaliana DELLAs and the C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (CPL3), a phosphatase involved in the dephosphorylation of RNA polymerase II. We show that CPL3 directly interacts with DELLA proteins and promotes DELLA protein stability by inhibiting its degradation by the 26S proteasome. Consequently, CPL3 negatively modulates multiple GA-mediated processes of plant development, including hypocotyl elongation, flowering time, and anthocyanin accumulation. Taken together, our findings demonstrate that CPL3 serves as a novel regulator that could improve DELLA stability and thereby participate in GA signaling transduction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Giberelinas , Unión Proteica , Antocianinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crecimiento & desarrollo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
2.
J Exp Bot ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466621

RESUMEN

Environmental cues, from biotic or abiotic origin, are major factors influencing plant growth and productivity. Interactions with biotic (e.g. symbionts and pathogens) and abiotic (e.g. changes in temperature, water or nutrient availability) factors trigger signaling and downstream transcriptome changes in plants. While bulk RNA-sequencing technologies have traditionally been used to profile these transcriptional changes, the heterogeneity of the responses, caused by the cellular complexity of organs, might be masked by homogenizing tissues. Thus, whether different cell types respond equally to environmental fluctuations, or whether subsets of the responses are cell-type specific, are long-lasting questions in plant biology. The recent break-through of single-cell transcriptomics in plant research offers an unprecedented view on cellular responses under changing environmental conditions. In this review, we discuss the contributions of single-cell transcriptomics towards the understanding of cell-type specific plant responses to biotic and abiotic environmental interactions. Besides major biological findings, we present some technical challenges coupled to single-cell studies of plant-environment interactions, proposing possible solutions and exciting paths for future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...