Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6013, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472343

RESUMEN

Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Analysis of known rupture determinants, including an automated quantitative analysis of nuclear lamina gaps, are consistent with CTDNEP1 acting independently of actin and nuclear lamina organization. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.


Asunto(s)
Actinas , Membrana Nuclear , Membrana Nuclear/metabolismo , Actinas/metabolismo , Movimiento Celular , Lámina Nuclear/metabolismo , Núcleo Celular/metabolismo
2.
Cancer Res Commun ; 3(9): 1756-1769, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37674528

RESUMEN

Mechanisms for Helicobacter pylori (Hp)-driven stomach cancer are not fully understood. In a transgenic mouse model of gastric preneoplasia, concomitant Hp infection and induction of constitutively active KRAS (Hp+KRAS+) alters metaplasia phenotypes and elicits greater inflammation than either perturbation alone. Gastric single-cell RNA sequencing showed that Hp+KRAS+ mice had a large population of metaplastic pit cells that expressed the intestinal mucin Muc4 and the growth factor amphiregulin. Flow cytometry and IHC-based immune profiling revealed that metaplastic pit cells were associated with macrophage and T-cell inflammation. Accordingly, expansion of metaplastic pit cells was prevented by gastric immunosuppression and reversed by antibiotic eradication of Hp. Finally, MUC4 expression was significantly associated with proliferation in human gastric cancer samples. These studies identify an Hp-associated metaplastic pit cell lineage, also found in human gastric cancer tissues, whose expansion is driven by Hp-dependent inflammation. Significance: Using a mouse model, we have delineated metaplastic pit cells as a precancerous cell type whose expansion requires Hp-driven inflammation. In humans, metaplastic pit cells show enhanced proliferation as well as enrichment in precancer and early cancer tissues, highlighting an early step in the gastric metaplasia to cancer cascade.


Asunto(s)
Helicobacter pylori , Neoplasias Gástricas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas p21(ras) , Modelos Animales de Enfermedad , Inflamación
3.
bioRxiv ; 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37398267

RESUMEN

Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Further analysis of known rupture contributors, including a newly developed automated quantitative analysis of nuclear lamina gaps, strongly suggests that CTDNEP1 acts in a new pathway. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.

4.
Elife ; 122023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37489578

RESUMEN

Integrin-mediated cell attachment rapidly induces tyrosine kinase signaling. Despite years of research, the role of this signaling in integrin activation and focal adhesion assembly is unclear. We provide evidence that the Src-family kinase (SFK) substrate Cas (Crk-associated substrate, p130Cas, BCAR1) is phosphorylated and associated with its Crk/CrkL effectors in clusters that are precursors of focal adhesions. The initial phospho-Cas clusters contain integrin ß1 in its inactive, bent closed, conformation. Later, phospho-Cas and total Cas levels decrease as integrin ß1 is activated and core focal adhesion proteins including vinculin, talin, kindlin, and paxillin are recruited. Cas is required for cell spreading and focal adhesion assembly in epithelial and fibroblast cells on collagen and fibronectin. Cas cluster formation requires Cas, Crk/CrkL, SFKs, and Rac1 but not vinculin. Rac1 provides positive feedback onto Cas through reactive oxygen, opposed by negative feedback from the ubiquitin proteasome system. The results suggest a two-step model for focal adhesion assembly in which clusters of phospho-Cas, effectors and inactive integrin ß1 grow through positive feedback prior to integrin activation and recruitment of core focal adhesion proteins.


Asunto(s)
Adhesiones Focales , Fosfoproteínas , Fosforilación , Adhesiones Focales/metabolismo , Fosfoproteínas/metabolismo , Integrina beta1/metabolismo , Proteína Sustrato Asociada a CrK/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Integrinas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo
5.
EMBO J ; 42(17): e114534, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37469281

RESUMEN

Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.


Asunto(s)
Proteínas Cromosómicas no Histona , Nucleosomas , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Centrómero/genética , Centrómero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
iScience ; 26(2): 105965, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824274

RESUMEN

Despite the knowledge that protein translation and various metabolic reactions that create and sustain cellular life occur in the cytoplasm, the structural organization within the cytoplasm remains unclear. Recent models indicate that cytoplasm contains viscous fluid and elastic solid phases. We separated these viscous fluid and solid elastic compartments, which we call the cytosol and cytomatrix, respectively. The distinctive composition of the cytomatrix included structural proteins, ribosomes, and metabolome enzymes. High-throughput analysis revealed unique biosynthetic pathways within the cytomatrix. Enrichment of biosynthetic pathways in the cytomatrix indicated the presence of immobilized biocatalysis. Enzymatic immobilization and segregation can surmount spatial impediments, and the local pathway segregation may form cytoplasmic organelles. Protein translation was reprogrammed within the cytomatrix under the restriction of protein synthesis by drug treatment. The cytosol and cytomatrix are an elaborately interconnected network that promotes operational flexibility in healthy cells and the survival of malignant cells.

7.
Mol Biol Cell ; 34(3): ar15, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598808

RESUMEN

Cells are subjected to a barrage of daily insults that often lead to their cortices being ripped open and requiring immediate repair. An important component of the cell's repair response is the formation of an actomyosin ring at the wound periphery to mediate its closure. Here we show that inhibition of myosin or the linear actin nucleation factors Diaphanous and/or dishevelled associated activator of morphogenesis results in a disrupted contractile apparatus and delayed wound closure. We also show that the branched actin nucleators WASp and SCAR function nonredundantly as scaffolds to assemble and maintain this contractile actomyosin cable. Removing branched actin leads to the formation of smaller circular actin-myosin structures at the cell cortex and to slow wound closure. Removing linear and branched actin simultaneously results in failed wound closure. Surprisingly, removal of branched actin and myosin results in the formation of parallel linear F-actin filaments that undergo a chiral swirling movement to close the wound, uncovering a new mechanism of cell wound closure. Taken together, we demonstrate the roles of different actin substructures that are required for optimal actomyosin ring formation and the extraordinary resilience of the cell to undergo wound repair when it is unable to form different subsets of these substructures.


Asunto(s)
Citoesqueleto de Actina , Actinas , Actomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Citocinesis , Miosinas/metabolismo
8.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-36711558

RESUMEN

Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.

9.
Elife ; 112022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36201241

RESUMEN

Diet-induced obesity leads to dysfunctional feeding behavior. However, the precise molecular nodes underlying diet-induced feeding motivation dysregulation are poorly understood. The fruit fly is a simple genetic model system yet displays significant evolutionary conservation to mammalian nutrient sensing and energy balance. Using a longitudinal high-sugar regime in Drosophila, we sought to address how diet-induced changes in adipocyte lipid composition regulate feeding behavior. We observed that subjecting adult Drosophila to a prolonged high-sugar diet degrades the hunger-driven feeding response. Lipidomics analysis reveals that longitudinal exposure to high-sugar diets significantly alters whole-body phospholipid profiles. By performing a systematic genetic screen for phospholipid enzymes in adult fly adipocytes, we identify Pect as a critical regulator of hunger-driven feeding. Pect is a rate-limiting enzyme in the phosphatidylethanolamine (PE) biosynthesis pathway and the fly ortholog of human PCYT2. We show that disrupting Pect activity only in the Drosophila fat cells causes insulin resistance, dysregulated lipoprotein delivery to the brain, and a loss of hunger-driven feeding. Previously human studies have noted a correlation between PCYT2/Pect levels and clinical obesity. Now, our unbiased studies in Drosophila provide causative evidence for adipocyte Pect function in metabolic homeostasis. Altogether, we have uncovered that PE phospholipid homeostasis regulates hunger response.


Asunto(s)
Drosophila melanogaster , Hambre , Animales , Drosophila , Drosophila melanogaster/genética , Cuerpo Adiposo/metabolismo , Conducta Alimentaria/fisiología , Humanos , Hambre/fisiología , Mamíferos , Obesidad/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolípidos/metabolismo , Azúcares/metabolismo
10.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34427308

RESUMEN

Regeneration after peripheral nerve damage requires that axons re-grow to the correct target tissues in a process called target-specific regeneration. Although much is known about the mechanisms that promote axon re-growth, re-growing axons often fail to reach the correct targets, resulting in impaired nerve function. We know very little about how axons achieve target-specific regeneration, particularly in branched nerves that require distinct targeting decisions at branch points. The zebrafish vagus motor nerve is a branched nerve with a well-defined topographic organization. Here, we track regeneration of individual vagus axons after whole-nerve laser severing and find a robust capacity for target-specific, functional re-growth. We then develop a new single-cell chimera injury model for precise manipulation of axon-environment interactions and find that (1) the guidance mechanism used during regeneration is distinct from the nerve's developmental guidance mechanism, (2) target selection is specified by neurons' intrinsic memory of their position within the brain, and (3) targeting to a branch requires its pre-existing innervation. This work establishes the zebrafish vagus nerve as a tractable regeneration model and reveals the mechanistic basis of target-specific regeneration.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Nervio Vago/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología
11.
PLoS One ; 16(4): e0244771, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33914760

RESUMEN

Although current antiretroviral therapies (ART) are successful in controlling HIV-1 infection, a stable viral reservoir reactivates when ART is discontinued. Consequently, there is a major research effort to develop approaches to disrupt the latent viral reservoir and enhance the immune system's ability to clear HIV-1. A number of small molecules, termed latency reversal agents (LRAs), have been identified which can reactivate latent HIV-1 in cell lines and patients' cells ex vivo. However, clinical trials have suggested that combinations of LRAs will be required to efficiently reactivate HIV-1 in vivo, especially LRAs that act synergistically by functioning through distinct pathways. To identify novel LRAs, we used an image-based assay to screen a natural compound library for the ability to induce a low level of aggregation of resting primary CD4+ T cells from healthy donors. We identified celastrol as a novel LRA. Celastrol functions synergistically with other classes of LRA to reactivate latent HIV-1 in a Jurkat cell line, suggesting a novel mechanism in its LRA activity. Additionally, celastrol does not appear to activate resting CD4+ T cells at levels at which it can reactivate latent HIV-1. Celastrol appears to represent a novel class of LRAs and it therefore can serve as a lead compound for LRA development.


Asunto(s)
Fármacos Anti-VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Latencia del Virus/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , Descubrimiento de Drogas , VIH-1/fisiología , Humanos , Células Jurkat
12.
Cell Rep Med ; 2(1): 100188, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33521702

RESUMEN

Chordomas are rare spinal tumors addicted to expression of the developmental transcription factor brachyury. In chordomas, brachyury is super-enhancer associated and preferentially downregulated by pharmacologic transcriptional CDK inhibition, leading to cell death. To understand the underlying basis of this sensitivity, we dissect the brachyury transcription regulatory network and compare the consequences of brachyury degradation with transcriptional CDK inhibition. Brachyury defines the chordoma super-enhancer landscape and autoregulates through binding its super-enhancer, and its locus forms a transcriptional condensate. Transcriptional CDK inhibition and brachyury degradation disrupt brachyury autoregulation, leading to loss of its transcriptional condensate and transcriptional program. Compared with transcriptional CDK inhibition, which globally downregulates transcription, leading to cell death, brachyury degradation is much more selective, inducing senescence and sensitizing cells to anti-apoptotic inhibition. These data suggest that brachyury downregulation is a core tenet of transcriptional CDK inhibition and motivates developing strategies to target brachyury and its autoregulatory feedback loop.


Asunto(s)
Biomarcadores de Tumor/genética , Cordoma/genética , Quinasas Ciclina-Dependientes/genética , Proteínas Fetales/genética , Proteínas de Neoplasias/genética , Neoplasias de la Columna Vertebral/genética , Proteínas de Dominio T Box/genética , Secuencia de Bases , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Cordoma/metabolismo , Cordoma/patología , Quinasas Ciclina-Dependientes/metabolismo , Proteínas Fetales/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Queratina-18/genética , Queratina-18/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , Proteolisis , Transducción de Señal , Neoplasias de la Columna Vertebral/metabolismo , Neoplasias de la Columna Vertebral/patología , Proteínas de Dominio T Box/metabolismo
13.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33450205

RESUMEN

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Asunto(s)
Antivirales/farmacología , Inmunidad/efectos de los fármacos , Empalmosomas/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Femenino , Amplificación de Genes/efectos de los fármacos , Humanos , Intrones/genética , Ratones , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-myc/metabolismo , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , ARN Bicatenario/metabolismo , Transducción de Señal/efectos de los fármacos , Empalmosomas/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética
14.
Life Sci Alliance ; 4(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33310760

RESUMEN

More than 80% of gastric cancer is attributable to stomach infection with Helicobacter pylori (Hp). Gastric preneoplastic progression involves sequential tissue changes, including loss of parietal cells, metaplasia and dysplasia. In transgenic mice, active KRAS expression recapitulates these tissue changes in the absence of Hp infection. This model provides an experimental system to investigate additional roles of Hp in preneoplastic progression, beyond its known role in initiating inflammation. Tissue histology, gene expression, the immune cell repertoire, and metaplasia and dysplasia marker expression were assessed in KRAS+ mice +/-Hp infection. Hp+/KRAS+ mice had severe T-cell infiltration and altered macrophage polarization; a different trajectory of metaplasia; more dysplastic glands; and greater proliferation of metaplastic and dysplastic glands. Eradication of Hp with antibiotics, even after onset of metaplasia, prevented or reversed these tissue phenotypes. These results suggest that gastric preneoplastic progression differs between Hp+ and Hp- cases, and that sustained Hp infection can promote the later stages of gastric preneoplastic progression.


Asunto(s)
Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Helicobacter pylori/fisiología , Gastropatías/etiología , Gastropatías/patología , Animales , Ratones , Gastropatías/metabolismo
15.
Oncogene ; 39(40): 6387-6392, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32820250

RESUMEN

After publication of this Article, the Authors noticed errors in some of the Figures. In Figures 2e, 2f-g, 4a, 4j, 5a and 6b, unmatched ß-actin was inadvertently used as loading control for the immunoblots. These have been corrected using repeat data from a similar set of samples and the revised Figures containing matched ß-actin and their respective quantification data are included below. In Figure 7a, the same image was inadvertently used to represent tumors 3 and 5 in the control group. This error has been corrected using original images of tumors 3 and 5 in the control group. Additional corrections have been made in the Article and Figure legends to enhance the clarity of the description. NAD was replaced by NADP. NAD/NADP was replaced by NADP/NADPH. The description of the antibody source and dilution for the antigens PFKFB4 (Abcam, 1:1000), G6PD, and HK1 (Cell Signaling, 1:1,000) have been included in the Methods section for Western Blot. The legend for Figure 4e and 4j has been updated. The HTML and PDF versions of this Article have been corrected. The scientific conclusions of this paper have not been affected.

16.
Cancers (Basel) ; 12(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599707

RESUMEN

Background: Cisplatin (CDDP) is commonly utilized in the treatment of advanced solid tumors including head and neck squamous cell carcinoma (HNSCC). Cisplatin response remains highly variable among individual tumors and development of cisplatin resistance is common. We hypothesized that development of cisplatin resistance is partially driven by metabolic reprogramming. Methods: Using a pre-clinical HNSCC model and an integrated approach to steady state metabolomics, metabolic flux and gene expression data we characterized the interaction between cisplatin resistance and metabolic reprogramming. Results: Cisplatin toxicity in HNSCC was driven by generation of intra-cellular oxidative stress. This was validated by demonstrating that acquisition of cisplatin resistance generates cross-resistance to ferroptosis agonists despite the fact that cisplatin itself does not trigger ferroptosis. Acquisition of cisplatin resistance dysregulated the expression of genes involved in amino acid, fatty acid metabolism and central carbon catabolic pathways, enhanced glucose catabolism and serine synthesis. Acute cisplatin exposure increased intra-tumoral levels of S-methyl-5-thiadenosine (MTA) precursors and metabotoxins indicative of generalized oxidative stress. Conclusions: Acquisition of cisplatin resistance is linked to metabolic recovery from oxidative stress. Although this portends poor effectiveness for directed metabolic targeting, it supports the potential for biomarker development of cisplatin effectiveness using an integrated approach.

17.
Dev Cell ; 53(3): 344-357.e5, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32302545

RESUMEN

Information flow through neural circuits often requires their organization into topographic maps in which the positions of cell bodies and synaptic targets correspond. To understand how topographic map development is controlled, we examine the mechanism underlying targeting of vagus motor axons to the pharyngeal arches in zebrafish. We reveal that retinoic acid organizes topography by specifying anterior-posterior identity in vagus motor neurons. We then show that chemoattractant signaling between Hgf and Met is required for vagus innervation of the pharyngeal arches. Finally, we find that retinoic acid controls the spatiotemporal dynamics of Hgf/Met signaling to coordinate axon targeting with the developmental progression of the pharyngeal arches and show that experimentally altering the timing of Hgf/Met signaling is sufficient to redirect axon targeting and disrupt the topographic map. These findings establish a mechanism of topographic map development in which the regulation of chemoattractant signaling in space and time guides axon targeting.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Tretinoina/farmacología , Nervio Vago/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Región Branquial/efectos de los fármacos , Región Branquial/fisiología , Factor de Crecimiento de Hepatocito/genética , Queratolíticos/farmacología , Proteínas Proto-Oncogénicas c-met/genética , Transducción de Señal , Análisis Espacio-Temporal , Nervio Vago/efectos de los fármacos , Proteínas de Pez Cebra/genética
18.
Oncogene ; 39(40): 6265-6285, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31383940

RESUMEN

Advanced Bladder Cancer (BLCA) remains a clinical challenge that lacks effective therapeutic measures. Here, we show that distinct, stage-wise metabolic alterations in BLCA are associated with the loss of function of aldehyde oxidase (AOX1). AOX1 associated metabolites have a high predictive value for advanced BLCA and our findings demonstrate that AOX1 is epigenetically silenced during BLCA progression by the methyltransferase activity of EZH2. Knockdown (KD) of AOX1 in normal bladder epithelial cells re-wires the tryptophan-kynurenine pathway resulting in elevated NADP levels which may increase metabolic flux through the pentose phosphate (PPP) pathway, enabling increased nucleotide synthesis, and promoting cell invasion. Inhibition of NADP synthesis rescues the metabolic effects of AOX1 KD. Ectopic AOX1 expression decreases NADP production, PPP flux and nucleotide synthesis, while decreasing invasion in cell line models and suppressing growth in tumor xenografts. Further gain and loss of AOX1 confirm the EZH2-dependent activation, metabolic deregulation, and tumor growth in BLCA. Our findings highlight the therapeutic potential of AOX1 and provide a basis for the development of prognostic markers for advanced BLCA.


Asunto(s)
Aldehído Oxidasa/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Vejiga Urinaria/patología , Aldehído Oxidasa/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Quinurenina/metabolismo , Masculino , Metabolómica , Ratones , NADP/metabolismo , Invasividad Neoplásica , Estadificación de Neoplasias , Nucleótidos/biosíntesis , Vía de Pentosa Fosfato/genética , RNA-Seq , Análisis de Matrices Tisulares , Triptófano/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Nucleic Acids Res ; 48(5): 2621-2642, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31863590

RESUMEN

Transposable elements (TEs) comprise a large proportion of long non-coding RNAs (lncRNAs). Here, we employed CRISPR to delete a short interspersed nuclear element (SINE) in Malat1, a cancer-associated lncRNA, to investigate its significance in cellular physiology. We show that Malat1 with a SINE deletion forms diffuse nuclear speckles and is frequently translocated to the cytoplasm. SINE-deleted cells exhibit an activated unfolded protein response and PKR and markedly increased DNA damage and apoptosis caused by dysregulation of TDP-43 localization and formation of cytotoxic inclusions. TDP-43 binds stronger to Malat1 without the SINE and is likely 'hijacked' by cytoplasmic Malat1 to the cytoplasm, resulting in the depletion of nuclear TDP-43 and redistribution of TDP-43 binding to repetitive element transcripts and mRNAs encoding mitotic and nuclear-cytoplasmic regulators. The SINE promotes Malat1 nuclear retention by facilitating Malat1 binding to HNRNPK, a protein that drives RNA nuclear retention, potentially through direct interactions of the SINE with KHDRBS1 and TRA2A, which bind to HNRNPK. Losing these RNA-protein interactions due to the SINE deletion likely creates more available TDP-43 binding sites on Malat1 and subsequent TDP-43 aggregation. These results highlight the significance of lncRNA TEs in TDP-43 proteostasis with potential implications in both cancer and neurodegenerative diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteostasis/genética , ARN Largo no Codificante/genética , Elementos de Nucleótido Esparcido Corto/genética , Apoptosis , Línea Celular , Citoplasma/metabolismo , Daño del ADN , Estrés del Retículo Endoplásmico , Activación Enzimática , Dosificación de Gen , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Mitosis , Modelos Biológicos , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia/genética , eIF-2 Quinasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA