Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37765053

RESUMEN

A set of styrylpyridinium (SP) compounds was synthesised in order to study their spectroscopic and cell labelling properties. The compounds comprised different electron donating parts (julolidine, p-dimethylaminophenyl, p-methoxyphenyl, 3,4,5-trimethoxyphenyl), conjugated linkers (vinyl, divinyl), and an electron-withdrawing N-alkylpyridinium part. Geminal or bis-compounds incorporating two styrylpyridinium (bis-SP) moieties at the 1,3-trimethylene unit were synthesised. Compounds comprising a divinyl linker and powerful electron-donating julolidine donor parts possessed intensive fluorescence in the near-infrared region (maximum at ~760 nm). The compounds had rather high cytotoxicity towards the cancerous cell lines HT-1080 and MH-22A; at the same time, basal cytotoxicity towards the NIH3T3 fibroblast cell line ranged from toxic to harmful. SP compound 6e had IC50 values of 1.0 ± 0.03 µg/mL to the cell line HT-1080 and 0.4 µg/mL to MH-22A; however, the basal toxicity LD50 was 477 mg/kg (harmful). The compounds showed large Stokes' shifts, including 195 nm for 6a,b, 240 nm for 6e, and 325 and 352 nm for 6d and 6c, respectively. The highest photoluminescence quantum yield (PLQY) values were observed for 6a,b, which were 15.1 and 12.2%, respectively. The PLQY values for the SP derivatives 6d,e (those with a julolidinyl moiety) were 0.5 and 0.7%, respectively. Cell staining with compound 6e revealed a strong fluorescent signal localised in the cell cytoplasm, whereas the cell nuclei were not stained. SP compound 6e possessed self-assembling properties and formed liposomes with an average diameter of 118 nm. The obtained novel data on near-infrared fluorescent probes could be useful for the development of biocompatible dyes for biomedical applications.

2.
Arh Hig Rada Toksikol ; 74(1): 1-7, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37014687

RESUMEN

This review summarises current knowledge about the genotoxic and genoprotective effects of 1,4-dihydropyridines (DHP) with the main focus on the water-soluble 1,4-DHPs. Most of these water-soluble compounds manifest very low calcium channel blocking activity, which is considered "unusual" for 1,4-DHPs. Glutapyrone, diludine, and AV-153 decrease spontaneous mutagenesis and frequency of mutations induced by chemical mutagens. AV-153, glutapyrone, and carbatones protect DNA against the damage produced by hydrogen peroxide, radiation, and peroxynitrite. The ability of these molecules to bind to the DNA may not be the only mechanism of DNA protection, as other mechanisms such as radical scavenging or binding to other genotoxic compounds may take place and enhance DNA repair. These uncertainties and reports of high 1,4-DHP concentrations damaging the DNA call for further in vitro and in vivo preclinical research, pharmacokinetic in particular, as it can help pinpoint the exact mechanism(s) of the genotoxic and/or genoprotective action of 1,4-DHPs.


Asunto(s)
Bloqueadores de los Canales de Calcio , Daño del ADN , Bloqueadores de los Canales de Calcio/farmacología , Reparación del ADN
3.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35890072

RESUMEN

Capsid assembly modulators (CAMs) have emerged as a promising class of antiviral agents. We studied the effects of twenty-one newly designed and synthesized CAMs including heteroaryldihydropyrimidine compounds (HAPs), their analogs and standard compounds on hepatitis B virus (HBV) capsid assembly. Cytoplasmic expression of the HBV core (HBc) gene driven by the exogenously delivered recombinant alphavirus RNA replicon was used for high level production of the full-length HBc protein in mammalian cells. HBV capsid assembly was assessed by native agarose gel immunoblot analysis, electron microscopy and inhibition of virion secretion in HepG2.2.15 HBV producing cell line. Induced fit docking simulation was applied for modelling the structural relationships of the synthesized compounds and HBc. The most efficient were the HAP class compounds-dihydropyrimidine 5-carboxylic acid n-alkoxyalkyl esters, which induced the formation of incorrectly assembled capsid products and their accumulation within the cells. HBc product accumulation in the cells was not detected with the reference HAP compound Bay 41-4109, suggesting different modes of action. A significant antiviral effect and substantially reduced toxicity were revealed for two of the synthesized compounds. Two new HAP compounds revealed a significant antiviral effect and a favorable toxicity profile that allows these compounds to be considered promising leads and drug candidates for the treatment of HBV infection. The established alphavirus based HBc expression approach allows for the specific selection of capsid assembly modulators directly in the natural cell environment.

4.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34681211

RESUMEN

The paradigm of ligand-receptor interactions postulated as "one compound-one target" has been evolving; a multi-target, pleiotropic approach is now considered to be realistic. Novel series of 1,4,5,6,7,8-hexahydro-5-oxoquinolines, pyranopyrimidines and S-alkyl derivatives of pyranopyrimidines have been synthesized in order to characterise their pleiotropic, multitarget activity on the FFA3/GPR41, FFA2/GPR43, and HCA2/GPR109A receptors. Hexahydroquinoline derivatives have been known to exhibit characteristic activity as FFA3/GPR41 ligands, but during this study we observed their impact on FFA2/GPR43 and HCA2/GPR109A receptors as well as their electron-donating activity. Oxopyranopyrimidine and thioxopyranopyrimidine type compounds have been studied as ligands of the HCA2/GPR109A receptor; nevertheless, they exhibited equal or higher activity towards FFA3/GPR41 and FFA2/GPR43 receptors. S-Alkyl derivatives of pyranopyrimidines that have not yet been studied as ligands of GPCRs were more active towards HCA2/GPR109A and FFA3/GPR41 receptors than towards FFA2/GPR43. Representative compounds from each synthesized series were able to decrease the lipopolysaccharide-induced gene expression and secretion of proinflammatory cytokines (IL-6, TNF-α) and of a chemokine (MCP-1) in THP-1 macrophages, resembling the effect of HCA2/GPR109A ligand niacin and the endogenous ligand propionate. This study revealed groups of compounds possessing multitarget activity towards several receptors. The obtained data could be useful for further development of multitarget ligands.

5.
Arh Hig Rada Toksikol ; 72(3): 148-156, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34187104

RESUMEN

The ubiquitin-proteasome system modifies different cellular and protein functions. Its dysregulation may lead to disrupted proteostasis associated with multiple pathologies and aging. Pharmacological regulation of proteasome functions is already an important part of the treatment of several diseases. 1,4-dihydropyridine (1,4-DHP) derivatives possess different pharmacological activities, including antiaging and neuroprotective. The aim of this study was to investigate the effects of several 1,4-DHP derivatives on mRNA expression levels of proteasomal genes Psma3, Psmb5, and Psmc6 in several organs of rats. Rats were treated with metcarbatone, etcarbatone, glutapyrone, styrylcarbatone, AV-153-Na, or AV-153-Ca per os for three days. mRNA expression levels were determined with real-time polymerase chain reaction (PCR). For AV-153-Na and AV-153-Ca, we also determined the expression of the Psma6 gene. In the kidney, metcarbatone, etcarbatone, styrylcarbatone, and AV-153-Na increased the expression of all analysed genes. Glutapyrone increased the expression of Psmb5 and Psmc6 but did not affect the expression of Psma3. In the blood, glutapyrone increased Psmb5 expression. In the liver, AV-153-Na increased the expression of Psma6 and Psmc6 but lowered the expression of Psmb5, while AV-153-Ca only increased Psma6 expression. The ability of 1,4-DHP derivatives to increase the expression of proteasome subunit genes might hold a therapeutic potential in conditions associated with impaired proteasomal functions, but further research is needed.


Asunto(s)
Riñón , Complejo de la Endopetidasa Proteasomal , Animales , Dihidropiridinas , Complejo de la Endopetidasa Proteasomal/genética , ARN Mensajero/genética , Ratas
6.
Biomed Pharmacother ; 138: 111452, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33684691

RESUMEN

Sirtuin 6 (SIRT6), a member of sirtuin family (SIRT1-7), regulates a variety of cellular processes involved in aging, metabolism, and cancer. Dysregulation of SIRT6 is widely observed in different breast cancer subtypes; however, the role and function of SIRT6 in cancer development remain largely unexplored. The aim of this study was to identify novel compounds targeting SIRT6 which may provide a new approach in development of anti-cancer therapy for breast cancer. Virtual screening was utilized to discover potential compounds targeting SIRT6 for in vitro screening. In addition, novel 1,4-dihydropyridine derivatives were synthetized and further subjected for the screening. The impact of the compounds on the deacetylation activity of SIRT6 was determined with HPLC method. The anti-cancer activities were screened for a panel of breast cancer cells. A set of 1,4-dihydropyridine derivatives was identified as SIRT6 inhibitors. A SIRT6 activating compound, (2,4-dihydroxy-phenyl)-2-oxoethyl 2-(3-methyl-4-oxo-2-phenyl-4H-chromen-8-yl)acetate (later called as 4H-chromen), was discovered and it provided 30-40-fold maximal activation. 4H-chromen was proposed to bind similarly to quercetin and place to previously reported SIRT6 activator sites. 4H-chromen was investigated in various breast cancer cells, and it decreased cell proliferation in all cells as well as arrested cell cycle in triple negative cells. Overall, this study describes a highly potent SIRT6 activator and new inhibitors that represent a novel tool to study the mechanism of SIRT6 function.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Sirtuinas/antagonistas & inhibidores , Sirtuinas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales/métodos , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Simulación del Acoplamiento Molecular/métodos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sirtuinas/química
7.
Chem Biol Drug Des ; 97(2): 253-265, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32772494

RESUMEN

We synthesized a set of 13 new and earlier described styrylpyridinium compounds (N-alkyl styrylpyridinium salts with bromide or tosylate anions) in order to evaluate antifungal activity against C. albicans cells, to assay the possible synergism with fluconazole, and to estimate cytotoxicity to mammalian cells. All compounds were synthesized according to a well-known two-step procedure involving alkylation of γ-picoline with appropriate alkyl bromide and further condensation with substituted benzaldehyde. Compounds with long N-alkyl chains (C18 H37 -C20 H41 ) had no antifungal activity against the cells of all tested C. albicans strains. Other styrylpyridinium compounds were able to inhibit yeast growth at the concentrations of 0.06-16 µg/ml. At fungicidal concentrations, the compound with the CN- group was least toxic to mammalian cells, showed the most effective synergism with fluconazole, and only slightly inhibited the respiration of C. albicans. The compound with the 4'-diethylamino group exhibited the strongest fungicidal properties and effectively blocked the respiration of C. albicans cells. However, toxicity to mammalian cells was also high. Summarizing, the results of our study indicate that styrylpyridinium compounds are promising candidates in the development of new antifungal drugs.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Compuestos de Piridinio/química , Animales , Antifúngicos/síntesis química , Células CHO , Candida albicans/metabolismo , Supervivencia Celular/efectos de los fármacos , Cricetinae , Cricetulus , Farmacorresistencia Microbiana/efectos de los fármacos , Sinergismo Farmacológico , Fluconazol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Compuestos de Piridinio/farmacología , Relación Estructura-Actividad
8.
Microorganisms ; 9(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375480

RESUMEN

Candida albicans-caused local and systemic diseases are a serious health issue worldwide, leading to high mycosis-associated morbidity and mortality. Efficient combinations of novel compounds with commonly used antifungals could be an important tool for fighting infections. The aim of this study was to evaluate the interaction of synthesized 4-(4-cyanostyryl)-1-dodecylpyridin-1-ium (CSDP+) bromide alone or in combination with fluconazole with yeast and mammalian cells. We investigated cytotoxicity of the tested agents to mammalian HEK-293 cells and the influence of CSDP+ on the ability of C. albicans wt and a clinical isolate to adhere to HEK-293. Accumulation of lipophilic cation ethidium (Et+) was used to monitor the activity of efflux pumps in HEK-293 cells. The effect of CSDP+ on the expression of the main efflux transporter genes and transcription factors in C.albicans cells as well as HEK-293 efflux pump gene ABCB1 was determined. The study showed that CSDP+ alone and in combination with fluconazole was nontoxic to HEK-293 cells and was able to reduce C.albicans adhesion. The treatment of C.albicans cells with CSDP+ in combination with fluconazole resulted in a considerable overexpression of the MDR1 and MRR1 genes. The findings suggest that these genes could be associated with efflux-related resistance to fluconazole. Measurements of Et+ fluorescence and analysis of ABCB1 gene expression demonstrated that mammalian cells were not sensitive to concentrations of CSDP+ affecting C. albicans.

9.
Data Brief ; 33: 106545, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294531

RESUMEN

In this data file the synthetic procedures for preparation of the original 4-pyridinium-1,4-dihydropyridines (4-Py-1,4-DHP) and their parent compounds - dialkyl 2,6-dimethyl-4-(3-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylates were described. In total, 5 unpublished compounds were obtained and characterised. All the structures of original compounds were confirmed by Nuclear Magnetic Resonance (NMR, including 1H NMR and 13C NMR) and low resolution mass spectra (MS) data. Additionally, the cytotoxic properties of four 4-Py-1,4-DHPs were evaluated on 3 cell lines - normal NIH3T3 (mouse embryonic fibroblast), cancerous HT-1080 (human lung fibrosarcoma) and MH-22A (mouse hepatoma) and self-assembling properties were studied and characterisation of formed nanoparticles were performed using dynamic light scattering technique. In this article provided data are directly related to the previously published research articles - "Novel cationic amphiphilic 1,4-dihydropyridine derivatives for DNA delivery" [1] where compound 5 was tested as gene delivery agent without full physico-chemical characterisation and "Synthesis and studies of calcium channel blocking and antioxidant activities of novel 4-pyridinium and/or N-propargyl substituted 1,4-dihydropyridine derivatives" [2] where synthesis and physico-chemical characterisation as well as calcium channel blocking and antioxidant activities were described for compound 6. Synthesis of other compounds - parent 1,4-DHPs 1 and 2, and 4-Py-1,4-DHPs 3-5, their characterisation, estimation of cytotoxicity and self-assembling properties for all 4-Py-1,4-DHPs 3-6 are reported herein for the first time. Information provided in this data file can be used in medicinal chemistry by other scientists to estimate structure-activity relationships for the analysis and construction of various cationic 1,4-dihydropyridine derivatives and related heterocycles.

10.
PeerJ ; 8: e10061, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240591

RESUMEN

1,4-dihydropyridines (1,4-DHP) possess important biochemical and pharmacological properties, including antimutagenic and DNA-binding activity. The latter activity was first described for water-soluble 1,4-DHP with carboxylic group in position 4, the sodium salt of the 1,4-DHP derivative AV-153 among others. Some data show the modification of physicochemical properties and biological activities of organic compounds by metal ions that form the salts. We demonstrated the different affinity to DNA and DNA-protecting capacity of AV-153 salts, depending on the salt-forming ion (Na, K, Li, Rb, Ca, Mg). This study aimed to use different approaches to collate data on the DNA-binding mode of AV-153-Na and five other AV-153 salts. All the AV-153 salts in this study quenched the ethidium bromide and DNA complex fluorescence, which points to an intercalation binding mode. For some of them, the intercalation binding was confirmed using cyclic voltammetry and circular dichroism spectroscopy. It was shown that in vitro all AV-153 salts can interact with four DNA bases. The FTIR spectroscopy data showed the interaction of AV-153 salts with both DNA bases and phosphate groups. A preference for base interaction was observed as the AV-153 salts interacted mostly with G and C bases. However, the highest differences were detected in the spectral region assigned to phosphate groups, which might indicate either conformational changes of DNA molecule (B form to A or H form) or partial denaturation of the molecule. According to the UV/VIS spectroscopy data, the salts also interact with the human telomere repeat, both in guanine quadruplex (G4) and single-stranded form; Na and K salts manifested higher affinity to G4, Li and Rb -to single-stranded DNA.

11.
Oxid Med Cell Longev ; 2020: 2075815, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308799

RESUMEN

A set of six new 4-pyridinio-1,4-dihydropyridine (1,4-DHP) compounds has been synthesized. The calcium channel modulating activity of these compounds was evaluated in an aorta vascular smooth muscle cell line (A7R5), in an isolated rat aortic ring model, and in human neuroblastoma cell lines (SH-SY5Y). The antagonistic effect of these 1,4-DHP was tested by modulating the impact of carbachol-dependent mobilization of intracellular Ca2+ in SH-SY5Y cells. The intracellular free Ca2+ concentration was measured in confluent monolayers of SH-SY5Y cells and A7R5 cells with the Ca2+-sensitive fluorescent indicator Fluo-4 NW. Only four compounds showed calcium channel blocking activity in SH-SY5Y and A7R5 cells as well as in the aortic ring model. Among them, compound 3 was the most active calcium channel antagonist, which had 3 times higher activity on carbachol-activated SH-SY5Y cells than amlodipine. Two of the compounds were inactive. Compound 4 had 9 times higher calcium agonist activity than the classic DHP calcium agonist Bay K8644. The intracellular mechanism for the action of compound 4 using inhibitor analysis was elucidated. Nicotinic as well as muscarinic receptors were not involved. Sarcoplasmic reticulum (ER) Ca2+ (SERCA) stores were not affected. Ryanodine receptors (RyRs), another class of intracellular Ca2+ releasing channels, participated in the agonist response evoked by compound 4. The electrooxidation data suggest that the studied compounds could serve as antioxidants in OS.


Asunto(s)
Calcio/metabolismo , Dihidropiridinas/uso terapéutico , Transporte Iónico/efectos de los fármacos , Animales , Dihidropiridinas/farmacología , Humanos , Ratas , Células Tumorales Cultivadas
12.
Oxid Med Cell Longev ; 2020: 8413713, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488932

RESUMEN

Three groups of synthetic lipids are chosen for studies: (1) 1,4-dihydropyridines (1,4-DHPs) containing two cationic moieties and their analogues; (2) 3,4-dihydro-2(1H)-pyridones containing a cationic moiety; and (3) acyclic, open-chain analogues, i.e., 2-amino-3-alkoxycarbonylalkylammonium derivatives. 1,4-DHPs possessing dodecyl alkyl chains in the ester groups in positions 3 and 5 and cationic nitrogen-containing groups in positions 2 and 6 have high cytotoxicity in cancer cells HT-1080 (human lung fibrosarcoma) and MH-22A (mouse hepatoma), but low cytotoxicity in the noncancerous NIH3T3 cells (mouse embryonic fibroblast). On the contrary, similar compounds having short (methyl, ethyl, or propoxyethyl) chains in the ester groups in positions 3 and 5 lack cytotoxicity in the cancer cells HT-1080 and MH-22A even at high doses. Inclusion of fluorine atoms in the alkyl chains in positions 3 and 5 of the DHP cycle decreases the cytotoxicity of the mentioned compounds. Structurally related dihydropyridones with a polar head group are substantially more toxic to normal and cancerous cells than the DHP analogues. Open-chain analogues of DHP lipids comprise the same conjugated aminovinylcarbonyl moiety and possess anticancer activity, but they also have high basal cytotoxicity. Electrochemical oxidation data demonstrate that oxidation potentials of selected compounds are in the range of 1.6-1.7 V for cationic 1,4-DHP, 2.0-2.4 V for cationic 3,4-dihydropyridones, and 1.2-1.5 V for 2-amino-3-alkoxycarbonylalkylammonium derivatives. Furthermore, the tested cationic 1,4-DHP amphiphiles possess antiradical activity. Molecular topological polar surface area values for the tested compounds were defined in accordance with the main fragments of compound structures. The determined logP values were highest for dodecyl ester groups in positions 3 and 5 of the 1,4-DHP and lowest for short alkyl chain-containing amphiphiles.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular , Dihidropiridinas/farmacología , Fibrosarcoma/tratamiento farmacológico , Enfermedades Pulmonares/tratamiento farmacológico , Piridonas/farmacología , Compuestos de Vinilo/farmacología , Animales , Carcinoma Hepatocelular/patología , Dihidropiridinas/química , Fibrosarcoma/patología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Enfermedades Pulmonares/patología , Ratones , Estructura Molecular , Células 3T3 NIH , Piridonas/química , Células Tumorales Cultivadas , Compuestos de Vinilo/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-31561891

RESUMEN

1,4-Dihydropyridines (1,4-DHP) possess important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. AV-153-Na, an antimutagenic and DNA-repair enhancing compound was shown to interact with DNA by intercalation. Here we studied DNA binding of several AV-153 salts to evaluate the impact of AV-153 modifications on its DNA binding capacity, the ability to scavenge the peroxynitrite, to protect HeLa and B-cells cells against DNA damage. Affinity of the AV-153 salts to DNA measured by a fluorescence assay was dependent on the metal ion forming a salt in position 4 of the 1,4-DHP, and it decreased as follows: Mg > Na > Ca > Li > Rb > K. AV-153-K and AV-153-Rb could not react chemically with peroxynitrite as opposed to AV-153-Mg and AV-153-Ca, the latter increased the decomposition rate of peroxynitrite. AV-153-Na and AV-153-Ca effectively reduced DNA damage induced by peroxynitrite in HeLa cells, while AV-153-K and AV-153-Rb were less effective, AV-153-Li did not protect the DNA, and AV-153-Mg even caused DNA damage itself. The Na, K, Ca and Mg AV-153 salts were also shown to reduce the level of DNA damage in human B-cells from healthy donors. Thus, metal ions modify both DNA-binding and DNA-protecting effects of the AV-153 salts.


Asunto(s)
Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Dihidropiridinas/farmacología , Sustancias Intercalantes/farmacología , Metales/farmacología , Niacina/análogos & derivados , Antioxidantes/toxicidad , Linfocitos B/efectos de los fármacos , Ensayo Cometa , Roturas del ADN de Cadena Simple , Reparación del ADN , Dihidropiridinas/toxicidad , Interacciones Farmacológicas , Células HeLa , Humanos , Sustancias Intercalantes/toxicidad , Niacina/farmacología , Niacina/toxicidad , Estrés Oxidativo , Ácido Peroxinitroso/toxicidad , Proteínas Recombinantes/farmacología , Análisis de la Célula Individual , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología
14.
Sci Rep ; 9(1): 684, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679627

RESUMEN

Biosynthesis of hydrogen sulfide (H2S), a key signalling molecule in human (patho)physiology, is mostly accomplished by the human enzymes cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MST). Several lines of evidence have shown a close correlation between increased H2S production and human diseases, such as several cancer types and amyotrophic lateral sclerosis. Identifying compounds selectively and potently inhibiting the human H2S-synthesizing enzymes may therefore prove beneficial for pharmacological applications. Here, the human enzymes CBS, CSE and MST were expressed and purified from Escherichia coli, and thirty-one pyridine derivatives were synthesized and screened for their ability to bind and inhibit these enzymes. Using differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), circular dichroism spectropolarimetry (CD), and activity assays based on fluorimetric and colorimetric H2S detection, two compounds (C30 and C31) sharing structural similarities were found to weakly inhibit both CBS and CSE: 1 mM C30 inhibited these enzymes by approx. 50% and 40%, respectively, while 0.5 mM C31 accounted for CBS and CSE inhibition by approx. 40% and 60%, respectively. This work, while presenting a robust methodological platform for screening putative inhibitors of the human H2S-synthesizing enzymes, highlights the importance of employing complementary methodologies in compound screenings.


Asunto(s)
Cistationina betasintasa/antagonistas & inhibidores , Cistationina gamma-Liasa/antagonistas & inhibidores , Sulfuro de Hidrógeno/metabolismo , Piridinas/farmacología , Sulfurtransferasas/antagonistas & inhibidores , Dicroismo Circular , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fluorometría/métodos , Humanos , Azul de Metileno , Piridinas/química , Sulfurtransferasas/metabolismo , Resonancia por Plasmón de Superficie
15.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 11): 1577-1579, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30443384

RESUMEN

In the title compound, C25H25NO5S, which exhibits metabolism-regulating activity, the 1,4-di-hydro-pyridine ring adopts a flattened boat conformation while the cyclo-hexenone ring is in an envelope conformation. Mol-ecules in the crystal are assembled into C(6) chains along the a-axis direction via N-H⋯O hydrogen bonds. The thienyl fragment is disordered over two sets of sites in a 0.7220 (19):0.2780 (19) ratio.

16.
Antioxidants (Basel) ; 7(9)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235855

RESUMEN

Oxidative stress has been implicated in pathophysiology of different human stress- and age-associated disorders, including osteoporosis for which antioxidants could be considered as therapeutic remedies as was suggested recently. The 1,4-dihydropyridine (DHP) derivatives are known for their pleiotropic activity, with some also acting as antioxidants. To find compounds with potential antioxidative activity, a group of 27 structurally diverse DHPs, as well as one pyridine compound, were studied. A group of 11 DHPs with 10-fold higher antioxidative potential than of uric acid, were further tested in cell model of human osteoblast-like cells. Short-term combined effects of DHPs and 50 µM H2O2 (1-h each), revealed better antioxidative potential of DHPs if administered before a stressor. Indirect 24-h effect of DHPs was evaluated in cells further exposed to mild oxidative stress conditions induced either by H2O2 or tert-butyl hydroperoxide (both 50 µM). Cell growth (viability and proliferation), generation of ROS and intracellular glutathione concentration were evaluated. The promotion of cell growth was highly dependent on the concentrations of DHPs used, type of stressor applied and treatment set-up. Thiocarbatone III-1, E2-134-1 III-4, Carbatone II-1, AV-153 IV-1, and Diethone I could be considered as therapeutic agents for osteoporosis although further research is needed to elucidate their bioactivity mechanisms, in particular in respect to signaling pathways involving 4-hydroxynoneal and related second messengers of free radicals.

17.
Arh Hig Rada Toksikol ; 68(3): 212-227, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28976888

RESUMEN

Studies on the pathogenesis of diabetes mellitus complications indicate that the compounds reducing free radicals and enhancing DNA repair could be prospective as possible remedies. Carbatonides, the disodium-2,6-dimethyl-1,4- dihydropyridine-3,5-bis(carbonyloxyacetate) derivatives, were tested for these properties. EPR spectroscopy showed that metcarbatone was an effective scavenger of hydroxyl radicals produced in the Fenton reaction, etcarbatone, and propcarbatone were less effective, styrylcarbatone was ineffective. UV/VIS spectroscopy revealed that styrylcarbatone manifested a hyperchromic effect when interacting with DNA, while all other carbatonides showeda hypochromic effect. Rats with streptozotocin induced type 1 DM were treated with metcarbatone, etcarbatone or styrylcarbatone (all compounds at doses 0.05 mg kg-1 or 0.5 mg kg-1) nine days after the DM approval. Gene expression levels in kidneys and blood were evaluated by quantitative RT-PCR; protein expression - immunohistochemically in kidneys, heart, sciatic nerve, and eyes; DNA breakage - by comet assay in nucleated blood cells. Induction of DM induced DNA breaks; metcarbatone and styrylcarbatone (low dose) alleviated this effect. Metcarbatone and etcarbatone up-regulated mRNA and protein of eNOS in kidneys of diabetic animals; etcarbatone also in myocardium. Etcarbatone reduced the expression of increased iNOS protein in myocardium, nerve, and kidneys. iNos gene expression was up-regulated in kidneys by etcarbatone and metcarbatone in diabetic animals. In blood, development of DM increased iNos gene expression; etcarbatone and metcarbatone normalised it. Etcarbatone up-regulated the expression of H2AX in kidneys of diabetic animals but decreased the production of c-PARP1. Taken together, our data indicate that carbatonides might have a potential as drugs intended to treat DM complications.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Experimental/complicaciones , Dihidropiridinas/metabolismo , Expresión Génica/efectos de los fármacos , Óxido Nítrico/metabolismo , Animales , Masculino , Estudios Prospectivos , Ratas
18.
Bioorg Med Chem ; 25(16): 4314-4329, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28668361

RESUMEN

Novel series of compounds consisting of 2-amidocyclohex-1-ene carboxylate and phenyl parts which are connected by enyne (compounds 2a-f), but-1-yne (compounds 4a-j), and phenylethylene (compounds 5a-f) linkers as HCA2 full agonists were designed and their functional activity using cAMP assay and binding affinity using radioligand (3H-niacin) binding assay were evaluated. In general, compounds of all three series exhibit similar HCA2 binding and activation profile. However, the activity is strongly dependent on the substituent at the aromatic part of the structure. Among the structures evaluated, the highest affinity and potency in all series were exhibited by compounds containing 4-hydroxy and/or 2-chloro or 2-fluoro substituents. The most active compounds in the enyne and but-1-yne series in the cAMP assay are 2-fluoro,4-hydroxy and 2-chloro,4-hydroxy phenyl derivatives 2f, 4f, and 4g showing potency similar to the previously described 4-hydroxy-biphenyl analogue 5c.


Asunto(s)
Ciclohexenos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Ciclohexenos/síntesis química , Ciclohexenos/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Receptores Nicotínicos , Relación Estructura-Actividad
19.
Oxid Med Cell Longev ; 2017: 4069839, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473879

RESUMEN

The effects of eleven 1,4-dihydropyridine derivatives (DHPs) used alone or together with prooxidant anticancer drug doxorubicin were examined on two cancer (HOS, HeLa) and two nonmalignant cell lines (HMEC, L929). Their effects on the cell growth (3H-thymidine incorporation) were compared with their antiradical activities (DPPH assay), using well-known DHP antioxidant diludine as a reference. Thus, tested DHPs belong to three groups: (1) antioxidant diludine; (2) derivatives with pyridinium moieties at position 4 of the 1,4-DHP ring; (3) DHPs containing cationic methylene onium (pyridinium, trialkylammonium) moieties at positions 2 and 6 of the 1,4-DHP ring. Diludine and DHPs of group 3 exerted antiradical activities, unlike compounds of group 2. However, novel DHPs had cell type and concentration dependent effects on 3H-thymidine incorporation, while diludine did not. Hence, IB-32 (group 2) suppressed the growth of HOS and HeLa, enhancing growth of L929 cells, while K-2-11 (group 3) enhanced growth of every cell line tested, even in the presence of doxorubicin. Therefore, growth regulating and antiradical activity principles of novel DHPs should be further studied to find if DHPs of group 2 could selectively suppress cancer growth and if those of group 3 promote wound healing.


Asunto(s)
Dihidropiridinas , Doxorrubicina/farmacología , Depuradores de Radicales Libres , Neoplasias/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Dihidropiridinas/química , Dihidropiridinas/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Células HeLa , Humanos , Ratones , Neoplasias/metabolismo , Neoplasias/patología , Ratas
20.
Oxid Med Cell Longev ; 2016: 1892412, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26881016

RESUMEN

Many 1,4-dihydropyridines (DHPs) possess redox properties. In this review DHPs are surveyed as protectors against oxidative stress (OS) and related disorders, considering the DHPs as specific group of potential antioxidants with bioprotective capacities. They have several peculiarities related to antioxidant activity (AOA). Several commercially available calcium antagonist, 1,4-DHP drugs, their metabolites, and calcium agonists were shown to express AOA. Synthesis, hydrogen donor properties, AOA, and methods and approaches used to reveal biological activities of various groups of 1,4-DHPs are presented. Examples of DHPs antioxidant activities and protective effects of DHPs against OS induced damage in low density lipoproteins (LDL), mitochondria, microsomes, isolated cells, and cell cultures are highlighted. Comparison of the AOA of different DHPs and other antioxidants is also given. According to the data presented, the DHPs might be considered as bellwether among synthetic compounds targeting OS and potential pharmacological model compounds targeting oxidative stress important for medicinal chemistry.


Asunto(s)
Antioxidantes/metabolismo , Dihidropiridinas/química , Niacinamida/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Amlodipino/química , Animales , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/química , Bloqueadores de los Canales de Calcio/química , Bovinos , Células Epiteliales/citología , Humanos , Hidrógeno/química , Lipoproteínas LDL/química , Ratones , Microsomas/metabolismo , Mitocondrias/metabolismo , Niacinamida/química , Nifedipino/química , Nitrobencenos , Oxidantes/química , Piperazinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...