Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Nutr ; 154(7): 2014-2028, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735572

RESUMEN

BACKGROUND: The gut microbiota contributes to metabolic disease, and diet shapes the gut microbiota, emphasizing the need to better understand how diet impacts metabolic disease via gut microbiota alterations. Fiber intake is linked with improvements in metabolic homeostasis in rodents and humans, which is associated with changes in the gut microbiota. However, dietary fiber is extremely heterogeneous, and it is imperative to comprehensively analyze the impact of various plant-based fibers on metabolic homeostasis in an identical setting and compare the impact of alterations in the gut microbiota and bacterially derived metabolites from different fiber sources. OBJECTIVES: The objective of this study was to analyze the impact of different plant-based fibers (pectin, ß-glucan, wheat dextrin, resistant starch, and cellulose as a control) on metabolic homeostasis through alterations in the gut microbiota and its metabolites in high-fat diet (HFD)-fed mice. METHODS: HFD-fed mice were supplemented with 5 different fiber types (pectin, ß-glucan, wheat dextrin, resistant starch, or cellulose as a control) at 10% (wt/wt) for 18 wk (n = 12/group), measuring body weight, adiposity, indirect calorimetry, glucose tolerance, and the gut microbiota and metabolites. RESULTS: Only ß-glucan supplementation during HFD-feeding decreased adiposity and body weight gain and improved glucose tolerance compared with HFD-cellulose, whereas all other fibers had no effect. This was associated with increased energy expenditure and locomotor activity in mice compared with HFD-cellulose. All fibers supplemented into an HFD uniquely shifted the intestinal microbiota and cecal short-chain fatty acids; however, only ß-glucan supplementation increased cecal butyrate concentrations. Lastly, all fibers altered the small-intestinal microbiota and portal bile acid composition. CONCLUSIONS: These findings demonstrate that ß-glucan consumption is a promising dietary strategy for metabolic disease, possibly via increased energy expenditure through alterations in the gut microbiota and bacterial metabolites in mice.


Asunto(s)
Dieta Alta en Grasa , Fibras de la Dieta , Microbioma Gastrointestinal , Homeostasis , Ratones Endogámicos C57BL , Animales , Fibras de la Dieta/farmacología , Fibras de la Dieta/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , Pectinas/farmacología , Pectinas/administración & dosificación
2.
Sci Total Environ ; 914: 169933, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199366

RESUMEN

An abundant body of scientific studies and regulatory guidelines substantiates antimicrobial efficacy of freshwater chlorination ensuring drinking water safety in large populations worldwide. In contrast to the purposeful use of chlorination ensuring antimicrobial safety of drinking water, only a limited body of research has addressed the molecular impact of chlorinated drinking water exposure on the gut microbiota. Here, for the first time, we have examined the differential effects of drinking water regimens stratified by chlorination agent [inorganic (HOCl) versus chloramine (TCIC)] on the C57BL/6J murine fecal microbiota. To this end, we exposed C57BL/6J mice to chlorinated drinking water regimens followed by fecal bacterial microbiota analysis at the end of the three-week feeding period employing 16S rRNA sequencing. α-diversity was strongly reduced when comparing chlorinated versus control drinking water groups and community dissimilarities (ß-diversity) were significant between groups even when comparing HOCl and TCIC. We detected significant differences in fecal bacterial composition as a function of drinking water chlorination observable at the phylum and genus levels. Differential abundance analysis of select amplicon sequence variants (ASVs) revealed changes as a function of chlorination exposure [up: Lactobacillus ASV1; Akkermansia muciniphila ASV7; Clostridium ss1 ASV10; down: Ileibacterium valens ASV5; Desulfovibrio ASV11; Lachnospiraceae UCG-006 ASV15]. Given the established complexity of murine and human gastrointestinal microbiota and their role in health and disease, the translational relevance of the chlorination-induced changes documented by us for the first time in the fecal murine microbiota remains to be explored.


Asunto(s)
Antiinfecciosos , Agua Potable , Microbiota , Ratones , Humanos , Animales , Agua Potable/microbiología , ARN Ribosómico 16S/genética , Ratones Endogámicos C57BL
3.
Nutr Metab (Lond) ; 20(1): 44, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858106

RESUMEN

BACKGROUND: The gut microbiome is a salient contributor to the development of obesity, and diet is the greatest modifier of the gut microbiome, which highlights the need to better understand how specific diets alter the gut microbiota to impact metabolic disease. Increased dietary fiber intake shifts the gut microbiome and improves energy and glucose homeostasis. Dietary fibers are found in various plant-based flours which vary in fiber composition. However, the comparative efficacy of specific plant-based flours to improve energy homeostasis and the mechanism by which this occurs is not well characterized. METHODS: In experiment 1, obese rats were fed a high fat diet (HFD) supplemented with four different plant-based flours for 12 weeks. Barley flour (BF), oat bran (OB), wheat bran (WB), and Hi-maize amylose (HMA) were incorporated into the HFD at 5% or 10% total fiber content and were compared to a HFD control. For experiment 2, lean, chow-fed rats were switched to HFD supplemented with 10% WB or BF to determine the preventative efficacy of flour supplementation. RESULTS: In experiment 1, 10% BF and 10% WB reduced body weight and adiposity gain and increased cecal butyrate. Gut microbiota analysis of WB and BF treated rats revealed increases in relative abundance of SCFA-producing bacteria. 10% WB and BF were also efficacious in preventing HFD-induced obesity; 10% WB and BF decreased body weight and adiposity, improved glucose tolerance, and reduced inflammatory markers and lipogenic enzyme expression in liver and adipose tissue. These effects were accompanied by alterations in the gut microbiota including increased relative abundance of Lactobacillus and LachnospiraceaeUCG001, along with increased portal taurodeoxycholic acid (TDCA) in 10% WB and BF rats compared to HFD rats. CONCLUSIONS: Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed to be due to increased concentrations of intestinal butyrate and circulating TDCA.

4.
Microbiome ; 11(1): 169, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37533066

RESUMEN

BACKGROUND: Upper small intestinal dietary lipids activate a gut-brain axis regulating energy homeostasis. The prebiotic, oligofructose (OFS) improves body weight and adiposity during metabolic dysregulation but the exact mechanisms remain unknown. This study examines whether alterations to the small intestinal microbiota following OFS treatment improve small intestinal lipid-sensing to regulate food intake in high fat (HF)-fed rats. RESULTS: In rats fed a HF diet for 4 weeks, OFS supplementation decreased food intake and meal size within 2 days, and reduced body weight and adiposity after 6 weeks. Acute (3 day) OFS treatment restored small intestinal lipid-induced satiation during HF-feeding, and was associated with increased small intestinal CD36 expression, portal GLP-1 levels and hindbrain neuronal activation following a small intestinal lipid infusion. Transplant of the small intestinal microbiota from acute OFS treated donors into HF-fed rats also restored lipid-sensing mechanisms to lower food intake. 16S rRNA gene sequencing revealed that both long and short-term OFS altered the small intestinal microbiota, increasing Bifidobacterium relative abundance. Small intestinal administration of Bifidobacterium pseudolongum to HF-fed rats improved small intestinal lipid-sensing to decrease food intake. CONCLUSION: OFS supplementation rapidly modulates the small intestinal gut microbiota, which mediates improvements in small intestinal lipid sensing mechanisms that control food intake to improve energy homeostasis. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Ratas , Animales , ARN Ribosómico 16S/genética , Obesidad/metabolismo , Peso Corporal , Grasas de la Dieta , Dieta Alta en Grasa/efectos adversos
5.
J Endocrinol ; 258(2)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37171833

RESUMEN

The gastrointestinal system is now considered the largest endocrine organ, highlighting the importance of gut-derived peptides and metabolites in metabolic homeostasis. Gut peptides are secreted from intestinal enteroendocrine cells in response to nutrients, microbial metabolites, and neural and hormonal factors, and they regulate systemic metabolism via multiple mechanisms. While extensive research is focused on the neuroendocrine effects of gut peptides, evidence suggests that several of these hormones act as endocrine signaling molecules with direct effects on the target organ, especially in a therapeutic setting. Additionally, the gut microbiota metabolizes ingested nutrients and fiber to produce compounds that impact host metabolism indirectly, through gut peptide secretion, and directly, acting as endocrine factors. This review will provide an overview of the role of endogenous gut peptides in metabolic homeostasis and disease, as well as the potential endocrine impact of microbial metabolites on host metabolic tissue function.


Asunto(s)
Microbioma Gastrointestinal , Metabolismo Energético , Sistema Endocrino/metabolismo , Homeostasis , Intestinos
6.
Metabolites ; 13(5)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37233701

RESUMEN

The complex development of type 2 diabetes (T2D) creates challenges for studying the progression and treatment of the disease in animal models. A newly developed rat model of diabetes, the Zucker Diabetic Sprague Dawley (ZDSD) rat, closely parallels the progression of T2D in humans. Here, we examine the progression of T2D and associated changes in the gut microbiota in male ZDSD rats and test whether the model can be used to examine the efficacy of potential therapeutics such as prebiotics, specifically oligofructose, that target the gut microbiota. Bodyweight, adiposity, and fed/fasting blood glucose and insulin were recorded over the course of the study. Glucose and insulin tolerance tests were performed, and feces collected at 8, 16, and 24 weeks of age for short-chain fatty acids and microbiota analysis using 16s rRNA gene sequencing. At the end of 24 weeks of age, half of the rats were supplemented with 10% oligofructose and tests were repeated. We observed a transition from healthy/nondiabetic to prediabetic and overtly diabetic states, via worsened insulin and glucose tolerance and significant increases in fed/fasted glucose, followed by a significant decrease in circulating insulin. Acetate and propionate levels were significantly increased in the overt diabetic state compared to healthy and prediabetic. Microbiota analysis demonstrated alterations in the gut microbiota with shifts in alpha and beta diversity as well as alterations in specific bacterial genera in healthy compared to prediabetic and diabetic states. Oligofructose treatment improved glucose tolerance and shifted the cecal microbiota of the ZDSD rats during late-stage diabetes. These findings underscore the translational potential of ZDSD rats as a model of T2D and highlight potential gut bacteria that could impact the development of the disease or serve as a biomarker for T2D. Additionally, oligofructose treatment was able to moderately improve glucose homeostasis.

7.
Biogerontology ; 23(6): 741-755, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36315375

RESUMEN

Chronic calorie restriction (CR) results in lengthened lifespan and reduced disease risk. Many previous studies have implemented 30-40% calorie restriction to investigate these benefits. The goal of our study was to investigate the effects of calorie restriction, beginning at 4 months of age, on metabolic and physical changes induced by aging. Male C57BL/6NCrl calorie restricted and ad libitum fed control mice were obtained from the National Institute on Aging (NIA) and studied at 10, 18, 26, and 28 months of age to better understand the metabolic changes that occur in response to CR in middle age and advanced age. Food intake was measured in ad libitum fed controls to assess the true degree of CR (15%) in these mice. We found that 15% CR decreased body mass and liver triglyceride content, improved oral glucose clearance, and increased all limb grip strength in 10- and 18-month-old mice. Glucose clearance in ad libitum fed 26- and 28-month-old mice is enhanced relative to younger mice but was not further improved by CR. CR decreased basal insulin concentrations in all age groups and improved insulin sensitivity and rotarod time to fall in 28-month-old mice. The results of our study demonstrate that even a modest reduction (15%) in caloric intake may improve metabolic and physical health. Thus, moderate calorie restriction may be a dietary intervention to promote healthy aging with improved likelihood for adherence in human populations.


Asunto(s)
Envejecimiento , Restricción Calórica , Ratones , Animales , Masculino , Humanos , Ratones Endogámicos C57BL , Envejecimiento/fisiología , Ingestión de Energía , Glucosa
8.
Obesity (Silver Spring) ; 30(7): 1442-1452, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35785478

RESUMEN

OBJECTIVE: Obesity is associated with consumption of a Western diet low in dietary fiber, while prebiotics reduce body weight. Fiber induces short-chain fatty acid (SCFA) production, and SCFA administration is beneficial to host metabolic homeostasis. However, the role of endogenous SCFA signaling in the development of obesity is contentious. Therefore, the primary objective of this study is to evaluate the postprandial time course of SCFA production and uptake in healthy (chow-fed), Western diet-fed (high-fat diet [HFD]) obese, and oligofructose-treated HFD-fed (HFD + OFS) rats. METHODS: Male Sprague-Dawley rats were maintained on chow or HFD for 5 weeks, with or without supplementation of 10% OFS for 3 weeks. SCFAs were measured in the ileum, cecum, colon, portal vein, and vena cava at 0, 2, 4, 6, and 8 hours postprandially. RESULTS: Postprandial cecal and portal vein SCFAs were decreased in obese rats compared with lean chow controls, whereas no differences were observed in fasting SCFA concentrations. OFS supplementation increased SCFA levels in the cecum and portal vein during obesity. Butyrate levels were positively associated with portal glucagon-like peptide 1 and adiposity and with Roseburia relative abundance. CONCLUSIONS: The current study demonstrates that obesity is associated with reduced SCFA production, and that OFS supplementation increases SCFA levels. Additionally, postprandial butyrate production appears to be beneficial to host energy homeostasis.


Asunto(s)
Butiratos , Ácidos Grasos Volátiles , Animales , Fibras de la Dieta/farmacología , Masculino , Obesidad , Oligosacáridos , Ratas , Ratas Sprague-Dawley
9.
Metabolomics ; 18(8): 60, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871176

RESUMEN

INTRODUCTION: Obesity occurs partly due to consumption of a high-fat, high-sugar and low fiber diet and is associated with an altered gut microbiome. Prebiotic supplementation can reverse obesity and beneficially alter the gut microbiome, evidenced by previous studies in rodents. However, the role of the small intestinal metabolome in obese and prebiotic supplemented rodents has never been investigated. OBJECTIVES: To investigate and compare the small intestinal metabolome of healthy and obese rats, as well as obese rats supplemented with the prebiotic oligofructose (OFS). METHODS: Untargeted metabolomics was performed on small intestinal contents of healthy chow-fed, high fat diet-induced obese, and obese rats supplemented with oligofructose using UPLC-MS/MS. Quantification of enterohepatic bile acids was performed with UPLC-MS to determine specific effects of obesity and fiber supplementation on the bile acid pool composition. RESULTS: The small intestinal metabolome of obese rats was distinct from healthy rats. OFS supplementation did not significantly alter the small intestinal metabolome but did alter levels of several metabolites compared to obese rats, including bile acid metabolites, amino acid metabolites, and metabolites related to the gut microbiota. Further, obese rats had lower total bile acids and increased taurine-conjugated bile acid species in enterohepatic circulation; this effect was reversed with OFS supplementation in high fat-feeding. CONCLUSION: Obesity is associated with a distinct small intestinal metabolome, and OFS supplementation reverses some metabolite levels that were altered in obese rats. Future research into the effects of specific metabolites identified in this study will provide deeper insight into the mechanism of fiber supplementation on improved body weight.


Asunto(s)
Metabolómica , Prebióticos , Animales , Ácidos y Sales Biliares , Cromatografía Liquida , Obesidad/metabolismo , Ratas , Espectrometría de Masas en Tándem
10.
Exp Mol Med ; 54(4): 377-392, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35474341

RESUMEN

The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.


Asunto(s)
Eje Cerebro-Intestino , Microbioma Gastrointestinal , Encéfalo/metabolismo , Metabolismo Energético , Microbioma Gastrointestinal/fisiología , Glucosa/metabolismo , Homeostasis/fisiología , Humanos , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...