Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Structure ; 32(9): 1281-1287, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241758

RESUMEN

Conformational dynamics is crucial for the biological function of RNA molecules and for their potential as therapeutic targets. This meeting report outlines key "take-home" messages that emerged from the presentations and discussions during the CECAM workshop "RNA dynamics from experimental and computational approaches" in Paris, June 26-28, 2023.


Asunto(s)
Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN , ARN/metabolismo , ARN/química , Biología Computacional/métodos , Humanos
2.
ChemMedChem ; : e202400437, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102419

RESUMEN

The French Society of Medicinal Chemistry or " Société de Chimie Thérapeutique " (SCT) was founded in 1966. Since its inception, its mission has been to promote knowledge in the main fields of pharmaceutical research and development, in particular the research and validation of biological targets of therapeutic interest, the screening, design and optimization of drug candidates, chemical biology, medicinal chemistry, pharmacokinetics, metabolism and toxicity. Since 1964, the Society has organized an annual international congress (RICT), and later thematic days for young researchers and workshops on specific topics. The SCT is also a member of the European Federation for Medicinal Chemistry (EFMC) and organized the International Symposium on Medicinal Chemistry (ISMC) in Nice in 2022. Several new trends can be identified in the activities of the SCT, such as the organization of regular webinars, but also the recent creation of the Young MedChem Forum, as well as the distribution of a newsletter reporting scientific achievements in the French community and abroad, and an improved presence on social networks. These trends are in line with the current changes in the field in terms of scientific progress, means of communication in the community and with the public and inclusiveness.

3.
RSC Med Chem ; 15(6): 1796-1797, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38911157

RESUMEN

Guest Editors Ruth Brenk, Peng Wu and Maria Duca introduce the RSC Medicinal Chemistry themed collection on 'Targeting RNA with small molecules'.

4.
Nat Rev Chem ; 8(2): 120-135, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38278932

RESUMEN

The development of innovative methodologies to identify RNA binders has attracted enormous attention in chemical biology and drug discovery. Although antibiotics targeting bacterial ribosomal RNA have been on the market for decades, the renewed interest in RNA targeting reflects the need to better understand complex intracellular processes involving RNA. In this context, small molecules are privileged tools used to explore the biological functions of RNA and to validate RNAs as therapeutic targets, and they eventually are to become new drugs. Despite recent progress, the rational design of specific RNA binders requires a better understanding of the interactions which occur with the RNA target to reach the desired biological response. In this Review, we discuss the challenges to approaching this underexplored chemical space, together with recent strategies to bind, interact and affect biologically relevant RNAs.


Asunto(s)
Descubrimiento de Drogas , ARN Ribosómico , ARN Ribosómico/genética , Descubrimiento de Drogas/métodos , ARN Bacteriano/genética , Antibacterianos/farmacología
5.
J Med Chem ; 66(15): 10639-10657, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37449818

RESUMEN

Noncoding RNAs (ncRNAs) play pivotal roles in the regulation of gene expression and represent a promising target for the development of new therapeutic approaches. Among these ncRNAs, microRNAs (miRNAs or miRs) are involved in the regulation of gene expression, and their dysregulation has been linked to several diseases such as cancers. Indeed, oncogenic miRNAs are overexpressed in cancer cells, thus promoting tumorigenesis and maintenance of cancer stem cells that are resistant to chemotherapy and often responsible for therapeutic failure. Here, we describe the design and synthesis of new small-molecule RNA binders able to inhibit the biogenesis of oncogenic miRNAs and target efficiently cancer stem cells. Through the biochemical study of their interaction with the target and thanks to intracellular assays, we describe the structure-activity relationships for this new series of RNA ligands, and we identify compounds bearing a very promising antiproliferative activity against cancer stem cells.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/metabolismo , Bleomicina , Ligandos , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad
6.
Chemistry ; 29(40): e202300825, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37079480

RESUMEN

Targeting RNA with small molecules is a major challenge of current medicinal chemistry, and the identification and design of original scaffolds able to selectively interact with an RNA target remains difficult. Various approaches have been developed based on classical medicinal chemistry strategies (fragment-based drug design, dynamic combinatorial chemistry, HTS or DNA-encoded libraries) as well as on advanced structural biology and biochemistry methodologies (such as X-ray, cryo-EM, NMR, or SHAPE). Here, we report the de novo design, synthesis, and biological evaluation of RNA ligands by using a straightforward and sustainable chemistry combined with molecular docking and biochemical and biophysical studies that allowed us to identify a novel pharmacophore for RNA binding. Specifically, we focused on targeting the biogenesis of microRNA-21, the well-known oncogene. This led us not only to promising inhibitors but also to a better understanding of the interactions between the small-molecule compounds and the RNA target paving the way for the rational design of efficient inhibitors with potential anticancer activity.


Asunto(s)
Diseño de Fármacos , MicroARNs , Simulación del Acoplamiento Molecular , Técnicas Químicas Combinatorias , Ligandos
7.
Chembiochem ; 24(7): e202200690, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36704975

RESUMEN

Ground-breaking research in disease biology and continuous efforts in method development have uncovered a range of potential new drug targets. Increasingly, the drug discovery process is informed by technologies involving chemical probes as tools. Applications for chemical probes comprise target identification and assessment, as well as the qualification of small molecules as chemical starting points and drug candidates. Progress in probe chemistry has opened the way to novel assay formats and pharmaceutical compound classes. The European Federation of Medicinal Chemistry and Chemical Biology (EFMC) has launched the Chemical Biology Initiative to advance science in the field of medicinal chemistry and chemical biology, while representing all members of this extended scientific community. This review provides an overview of the many important developments in the field of chemical biology that have happened at the lively interface of academic and industrial research.


Asunto(s)
Química Farmacéutica , Descubrimiento de Drogas , Sistemas de Liberación de Medicamentos , Biología
8.
Chempluschem ; 87(11): e202200250, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36148854

RESUMEN

Targeting RNA with synthetic small molecules attracted much interest during recent years as a particularly promising therapeutic approach in a large number of pathologies spanning from genetic disorders, cancers as well as bacterial and viral infections. In this work, we took advantage of a known RNA binder, neomycin, to prepare neomycin-imidazole conjugates mimicking the active site of ribonuclease enzymes able to induce a site-specific cleavage of HIV-1 TAR RNA in physiological conditions. These new conjugates were prepared using a straightforward synthetic methodology and were studied for their ability to bind the target, inhibit Tat/TAR interaction and induce selective cleavage using fluorescence-based assays and molecular docking. We found compounds with nanomolar affinity, promising cleavage activity and the ability to inhibit Tat/TAR interaction with submicromolar IC50 s.


Asunto(s)
Duplicado del Terminal Largo de VIH , Neomicina , Neomicina/farmacología , Neomicina/química , Neomicina/metabolismo , División del ARN , Simulación del Acoplamiento Molecular , ARN Viral/química , ARN Viral/metabolismo , Imidazoles
9.
RSC Med Chem ; 13(3): 311-319, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35434630

RESUMEN

The discovery of new original scaffolds for selective RNA targeting is one of the main challenges of current medicinal chemistry since therapeutically relevant RNAs represent potential targets for a number of pathologies. Recent efforts have been devoted to the search for RNA ligands targeting the biogenesis of oncogenic miRNAs whose overexpression has been directly linked to the development of various cancers. In this work, we developed a new series of RNA ligands for the targeting of oncogenic miRNA biogenesis based on the 2-deoxystreptamine scaffold. The latter is part of the aminoglycoside neomycin and is known to play an essential role in the RNA interaction of this class of RNA binders. 2-deoxystreptamine was thus conjugated to natural and artificial nucleobases to obtain new binders of the oncogenic miR-372 precursor (pre-miR-372). We identified some conjugates exhibiting a similar biological activity to previously synthesized neomycin analogs and studied their mode of binding with the target pre-miR-372.

11.
Chembiochem ; 22(19): 2823-2825, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347337

RESUMEN

The European Federation for Medicinal chemistry and Chemical biology (EFMC) is a federation of learned societies. It groups organizations of European scientists working in a dynamic field spanning chemical biology and medicinal chemistry. New ideas, tools, and technologies emerging from a wide array of scientific disciplines continuously energize this rapidly evolving area. Medicinal chemistry is the design, synthesis, and optimization of biologically active molecules aimed at discovering new drug candidates - a mission that in many ways overlaps with the scope of chemical biology. Chemical biology is by now a mature field of science for which a more precise definition of what it encompasses, in the frame of EFMC, is timely. This article discusses chemical biology as currently understood by EFMC, including all activities dealing with the design and synthesis of biologically active chemical tools and their use to probe, characterize, or influence biological systems.


Asunto(s)
Preparaciones Farmacéuticas/química , Química Farmacéutica , Europa (Continente) , Humanos , Preparaciones Farmacéuticas/síntesis química
12.
ACS Med Chem Lett ; 12(6): 899-906, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34141067

RESUMEN

Targeting RNAs using small molecules is an emerging field of medicinal chemistry and holds promise for the discovery of efficient tools for chemical biology. MicroRNAs are particularly interesting targets since they are involved in a number of pathologies such as cancers. Indeed, overexpressed microRNAs in cancer are oncogenic and various series of inhibitors of microRNAs biogenesis have been developed in recent years. Here, we describe the structure-based design of new efficient inhibitors of microRNA-21. Starting from a previously identified hit, we performed biochemical studies and molecular docking to design a new series of optimized conjugates of neomycin aminoglycoside with artificial nucleobases and amino acids. Investigation about the mode of action and the site of the interaction of the newly synthesized compounds allowed for the description of structure-activity relationships and the identification of the most important parameters for miR-21 inhibition.

13.
ChemMedChem ; 16(1): 14-29, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32803855

RESUMEN

Despite the existing arsenal of anti-cancer drugs, 10 million people die each year worldwide due to cancers; this highlights the need to discover new therapies based on innovative modes of action against these pathologies. Current chemotherapies are based on the use of cytotoxic agents, targeted drugs, monoclonal antibodies or immunotherapies that are able to reduce or stop the proliferation of cancer cells. However, tumor eradication is often hampered by the presence of resistant cells called cancer stem-like cells or cancer stem cells (CSCs). Several strategies have been proposed to specifically target CSCs such as the use of CSC-specific antibodies, small molecules able to target CSC signaling pathways or drugs able to induce CSC differentiation rendering them sensitive to classical chemotherapy. These latter compounds are the focus of the present review, which aims to report recent advances in anticancer-differentiation strategies. This therapeutic approach was shown to be particularly promising for eradicating tumors in which CSCs are the main reason for therapeutic failure. This general view of the chemistry and mechanism of action of compounds inducing the differentiation of CSCs could be particularly useful for a broad range of researchers working in the field of anticancer therapies as the combination of compounds that induce differentiation with classical chemotherapy could represent a successful approach for future therapeutic applications.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Diferenciación Celular , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico
14.
16.
Chemistry ; 26(54): 12273-12309, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32539167

RESUMEN

Natural aminoglycosides are therapeutically useful antibiotics and very efficient RNA ligands. They are oligosaccharides that contain several ammonium groups able to interfere with the translation process in prokaryotes upon binding to bacterial ribosomal RNA (rRNA), and thus, impairing protein synthesis. Even if aminoglycosides are commonly used in therapy, these RNA binders lack selectivity and are able to bind to a wide number of RNA sequences/structures. This is one of the reasons for their toxicity and limited applications in therapy. At the same time, the ability of aminoglycosides to bind to various RNAs renders them a great source of inspiration for the synthesis of new binders with improved affinity and specificity toward several therapeutically relevant RNA targets. Thus, a number of studies have been performed on these complex and highly functionalized compounds, leading to the development of various synthetic methodologies toward the synthesis of conjugated aminoglycosides. The aim of this review is to highlight recent progress in the field of aminoglycoside conjugation, paying particular attention to modifications performed toward the improvement of affinity and especially to the selectivity of the resulting compounds. This will help readers to understand how to introduce a desired chemical modification for future developments of RNA ligands as antibiotics, antiviral, and anticancer compounds.


Asunto(s)
Aminoglicósidos , ARN , Antibacterianos/farmacología , Ligandos , ARN Bacteriano/química
17.
Cancers (Basel) ; 12(6)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526884

RESUMEN

Melanoma patients harboring the BRAFV600E mutation are treated with vemurafenib. Almost all of them ultimately acquire resistance, leading to disease progression. Here, we find that a small molecule from a marine sponge, panicein A hydroquinone (PAH), overcomes resistance of BRAFV600E melanoma cells to vemurafenib, leading to tumor elimination in corresponding human xenograft models in mice. We report the synthesis of PAH and demonstrate that this compound inhibits the drug efflux activity of the Hedgehog receptor, Patched. Our SAR study allowed identifying a key pharmacophore responsible for this activity. We showed that Patched is strongly expressed in metastatic samples from a cohort of melanoma patients and is correlated with decreased overall survival. Patched is a multidrug transporter that uses the proton motive force to efflux drugs. This makes its function specific to cancer cells, thereby avoiding toxicity issues that are commonly observed with inhibitors of ABC multidrug transporters. Our data provide strong evidence that PAH is a highly promising lead for the treatment of vemurafenib resistant BRAFV600E melanoma.

18.
Chem Commun (Camb) ; 55(70): 10432-10435, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31408066

RESUMEN

RNA represents an extremely promising and yet challenging therapeutic target. Here, we report the design of a series of C-nucleosides as original RNA binders. Some of them bind strongly and selectively to A-site prokaryotic ribosomal RNA.


Asunto(s)
Nucleósidos/metabolismo , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Dicroismo Circular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Nucleósidos/química , ARN Ribosómico/química , Termodinámica
19.
Org Biomol Chem ; 16(34): 6262-6274, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30116813

RESUMEN

MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers, thus being oncogenic. The inhibition of oncogenic miRNAs (defined as the blocking of miRNAs' production or function) would find application in the therapy of different types of cancer in which these miRNAs are implicated. In this work, we describe the design and synthesis of new small-molecule RNA ligands with the aim of inhibiting Dicer-mediated processing of oncogenic miRNAs. One of the synthesized compound (4b) composed of the aminoglycoside neomycin conjugated to an artificial nucleobase and to amino acid histidine is able to selectively decrease miR-372 levels in gastric adenocarcinoma (AGS) cells and to restore the expression of the target LATS2 protein. This activity led to the inhibition of proliferation of these cells. The study of the interactions of 4b with pre-miR-372 allowed for the elucidation of the molecular mechanism of the conjugate, thus leading to new perspectives for the design of future inhibitors.


Asunto(s)
Aminoácidos/química , Carcinogénesis , MicroARNs/biosíntesis , Neomicina/química , Neomicina/farmacología , Purinas/química , Pirimidinas/química , Adenocarcinoma/patología , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , MicroARNs/genética , Simulación del Acoplamiento Molecular , Neomicina/metabolismo , Conformación de Ácido Nucleico , Neoplasias Gástricas/patología
20.
Sci Rep ; 8(1): 1667, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374231

RESUMEN

MicroRNAs are key factors in the regulation of gene expression and their deregulation has been directly linked to various pathologies such as cancer. The use of small molecules to tackle the overexpression of oncogenic miRNAs has proved its efficacy and holds the promise for therapeutic applications. Here we describe the screening of a 640-compound library and the identification of polyamine derivatives interfering with in vitro Dicer-mediated processing of the oncogenic miR-372 precursor (pre-miR-372). The most active inhibitor is a spermine-amidine conjugate that binds to the pre-miR-372 with a KD of 0.15 µM, and inhibits its in vitro processing with a IC50 of 1.06 µM. The inhibition of miR-372 biogenesis was confirmed in gastric cancer cells overexpressing miR-372 and a specific inhibition of proliferation through de-repression of the tumor suppressor LATS2 protein, a miR-372 target, was observed. This compound modifies the expression of a small set of miRNAs and its selective biological activity has been confirmed in patient-derived ex vivo cultures of gastric carcinoma. Polyamine derivatives are promising starting materials for future studies about the inhibition of oncogenic miRNAs and, to the best of our knowledge, this is the first report about the application of functionalized polyamines as miRNAs interfering agents.


Asunto(s)
Antineoplásicos/farmacología , MicroARNs/metabolismo , Poliaminas/farmacología , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora , Poliaminas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...