Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 199(8-9): 730-735, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225195

RESUMEN

PyMCGPU-IR is an innovative occupational dose monitoring tool for interventional radiology procedures. It reads the radiation data from the Radiation Dose Structured Report of the procedure and combines this information with the position of the monitored worker recorded using a 3D camera system. This information is used as an input file for the fast Monte Carlo radiation transport code MCGPU-IR in order to assess the organ doses, Hp(10) and Hp(0.07), as well as the effective dose. In this study, Hp(10) measurements of the first operator during an endovascular aortic aneurysm repair procedure and a coronary angiography using a ceiling suspended shield are compared to PyMCGPU-IR calculations. Differences in the two reported examples are found to be within 15%, which is considered as being very satisfactory. The study highlights the promising advantages of PyMCGPU-IR, although there are still several improvements that need to be implemented before its final clinical use.


Asunto(s)
Equipos de Seguridad , Radiometría , Angiografía Coronaria , Método de Montecarlo , Radiología Intervencionista
2.
Phys Med ; 82: 64-71, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33588229

RESUMEN

INTRODUCTION: Interventional procedures are associated with potentially high radiation doses to the skin. The 2013/59/EURATOM Directive establishes that the equipment used for interventional radiology must have a device or a feature informing the practitioner of relevant parameters for assessing patient dose at the end of the procedure. Monte Carlo codes of radiation transport are considered to be one of the most reliable tools available to assess doses. However, they are usually too time consuming for use in clinical practice. This work presents the validation of the fast Monte Carlo code MC-GPU for application in interventional radiology. METHODOLOGIES: MC-GPU calculations were compared against the well-validated Monte Carlo simulation code PENELOPE/penEasy by simulating the organ dose distribution in a voxelized anthropomorphic phantom. In a second phase, the code was compared against thermoluminescent measurements performed on slab phantoms, both in a calibration laboratory and at a hospital. RESULTS: The results obtained from the two simulation codes show very good agreement, differences in the output were within 1%, whereas the calculation time on the MC-GPU was 2500 times shorter. Comparison with measurements is of the order of 10%, within the associated uncertainty. CONCLUSIONS: It has been verified that MC-GPU provides good estimates of the dose when compared to PENELOPE program. It is also shown that it presents very good performance when assessing organ doses in very short times, less than one minute, in real clinical set-ups. Future steps would be to simulate complex procedures with several projections.


Asunto(s)
Benchmarking , Cardiología , Humanos , Método de Montecarlo , Fantasmas de Imagen , Radiología Intervencionista
3.
Sci Total Environ ; 663: 818-829, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30738262

RESUMEN

In nuclear medicine radionuclides are administered to patients both for diagnosis or treatment. Subsequently, the excreta from patients, enriched in radionuclides, enter the sewerage networks and reach wastewater treatment plants (TPs). Characterization of inflow wastewaters, sewage effluents and sewage sludges in the seven different urban WWTPs in the Barcelona Metropolitan Area (BMA) has been done and 131I, 99mTc, 111In, 67Ga and 123I concentrations were determined by gamma-spectroscopy. In order to explain the diversity of nuclear medicine short-lived radionuclide concentrations found in the BMA, mean sewage sludge ages and wastewater hydraulic retention times were determined, NM services located and patient management guidelines described. Results were found to vary greatly among the different TPs in inflow wastewaters, sewage effluents and sewage sludges. 131I and 99mTc activity concentrations showed the highest values in most of the inflow wastewaters, sewage effluents and sewage sludges. In the integrated analysis of the present findings, a large-sized TP (320,000 m3/d) from the BMA urban wastewater treatment system shows higher levels and detection frequencies of medically-derived radionuclides. The maximums detected in the sludges from this TP, are partly explained by the relatively low sewage sludge ages. Furthermore, inflow wastewater hydraulic retention times and sludge ages in the TPs are long enough for decay of the short-lived nuclear medicine radionuclides studied (t1/2 ≤ 8d) in such a way that TPs work as abatement systems and decrease the levels of radioactivity both in the effluent and in the final sludge. An integrated analysis of 7 TPs from the same system has been carried out to go further into the dynamics of medically-derived radionuclides in it.

5.
Radiat Prot Dosimetry ; 164(1-2): 79-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25514919

RESUMEN

The equivalent dose limit for the eye lens for occupational exposure recommended by the ICRP has been reduced to 20 mSv y(-1) averaged over defined periods of 5 y, with no single year exceeding 50 mSv. The compliance with this new requirement could not be easy in some workplace such as interventional radiology and cardiology. The aim of this study is to evaluate different possible approaches in order to have a good estimate of the eye lens dose during interventional procedures. Measurements were performed with an X-ray system Philips Allura FD-10, using a PMMA phantom to simulate the patient scattered radiation and a Rando phantom to simulate the cardiologist. Thermoluminescence (TL) whole-body and TL eye lens dosemeters together with Philips DoseAware active dosemeters were located on different positions of the Rando phantom to estimate the eye lens dose in typical cardiology procedures. The results show that, for the studied conditions, any of the analysed dosemeter positions are suitable for eye lens dose assessment. However, the centre of the thyroid collar and the left ear position provide a better estimate. Furthermore, in practice, improper use of the ceiling-suspended screen can produce partial protection of some parts of the body, and thus large differences between the measured doses and the actual exposure of the eye could arise if the dosemeter is not situated close to the eye.


Asunto(s)
Cateterismo Cardíaco/métodos , Cristalino/efectos de la radiación , Protección Radiológica/métodos , Radiografía Intervencional/métodos , Radiometría/métodos , Cateterismo Cardíaco/efectos adversos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Cristalino/lesiones , Dosis de Radiación , Protección Radiológica/instrumentación , Radiografía Intervencional/efectos adversos , Radiometría/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Phys Med Biol ; 52(14): 4265-81, 2007 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-17664607

RESUMEN

The purpose of this work was to simulate with the Monte Carlo (MC) code PENELOPE the dose distribution in lung tumours including breathing motion in stereotactic body radiation therapy (SBRT). Two phantoms were modelled to simulate a pentagonal cross section with chestwall (unit density), lung (density 0.3 g cm(-3)) and two spherical tumours (unit density) of diameters respectively of 2 cm and 5 cm. The phase-space files (PSF) of four different SBRT field sizes of 6 MV from a Varian accelerator were calculated and used as beam sources to obtain both dose profiles and dose-volume histograms (DVHs) in different volumes of interest. Dose distributions were simulated for five beams impinging on the phantom. The simulations were conducted both for the static case and including the influence of respiratory motion. To reproduce the effect of breathing motion different simulations were performed keeping the beam fixed and displacing the phantom geometry in chosen positions in the cranial and caudal and left-right directions. The final result was obtained by combining the different position with two motion patterns. The MC results were compared with those obtained with three commercial treatment planning systems (TPSs), two based on the pencil beam (PB) algorithm, the TMS-HELAX (Nucletron, Sweden) and Eclipse (Varian Medical System, Palo Alto, CA), and one based on the collapsed cone algorithm (CC), Pinnacle(3) (Philips). Some calculations were also carried out with the analytical anisotropic algorithm (AAA) in the Eclipse system. All calculations with the TPSs were performed without simulated breathing motion, according to clinical practice. In order to compare all the TPSs and MC an absolute dose calibration in Gy/MU was performed. The analysis shows that the dose (Gy/MU) in the central part of the gross tumour volume (GTV) is calculated for both tumour sizes with an accuracy of 2-3% with PB and CC algorithms, compared to MC. At the periphery of the GTV the TPSs overestimate the dose up to 10%, while in the lung tissue close to the GTV PB algorithms overestimate the dose and the CC underestimates it. When clinically relevant breathing motions are included in the MC simulations, the static calculations with the TPSs still give a relatively accurate estimate of the dose in the GTV. On the other hand, the dose at the periphery of the GTV is overestimated, compared to the static case.


Asunto(s)
Algoritmos , Neoplasias Pulmonares/fisiopatología , Neoplasias Pulmonares/radioterapia , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Mecánica Respiratoria , Programas Informáticos , Carga Corporal (Radioterapia) , Humanos , Método de Montecarlo , Movimiento , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Phys Med Biol ; 52(1): 303-16, 2007 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-17183143

RESUMEN

The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm(2) and a thickness of 0.5 microm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can successfully reproduce the response of a detector with such a small active area.


Asunto(s)
Fotones , Radiometría/instrumentación , Radiometría/métodos , Algoritmos , Calibración , Simulación por Computador , Humanos , Método de Montecarlo , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Programas Informáticos , Dosimetría Termoluminiscente/métodos , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...