Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(3): e9934, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36993149

RESUMEN

The harmful effects of close inbreeding have been recognized for centuries and, with the rise of Mendelian genetics, was realized to be an effect of homozygosis. This historical background led to great interest in ways to quantify inbreeding, its depression effects on the phenotype and flow-on effects on mate choice and other aspects of behavioral ecology. The mechanisms and cues used to avoid inbreeding are varied and include major histocompatibility complex (MHC) molecules and the peptides they transport as predictors of the degree of genetic relatedness. Here, we revisit and complement data from a Swedish population of sand lizards (Lacerta agilis) showing signs of inbreeding depression to assess the effects of genetic relatedness on pair formation in the wild. Parental pairs were less similar at the MHC than expected under random mating but mated at random with respect to microsatellite relatedness. MHC clustered in groups of RFLP bands but no partner preference was observed with respect to partner MHC cluster genotype. Male MHC band patterns were unrelated to their fertilization success in clutches selected for analysis on the basis of showing mixed paternity. Thus, our data suggest that MHC plays a role in pre-copulatory, but not post-copulatory partner association, suggesting that MHC is not the driver of fertilization bias and gamete recognition in sand lizards.

2.
Evol Appl ; 12(4): 773-790, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30976309

RESUMEN

The intentional introduction of exotic species through classical biological control programs provides unique opportunities to examine the consequences of population movement and ecological processes for the genetic diversity and population structure of introduced species. The weevils Neochetina bruchi and N. eichhorniae (Coleoptera: Curculionidae) have been introduced globally to control the invasive floating aquatic weed, Eichhornia crassipes, with variable outcomes. Here, we use the importation history and data from polymorphic microsatellite markers to examine the effects of introduction processes on population genetic diversity and structure. We report the first confirmation of hybridization between these species, which could have important consequences for the biological control program. For both species, there were more rare alleles in weevils from the native range than in weevils from the introduced range. N. eichhorniae also had higher allelic richness in the native range than in the introduced range. Neither the number of individuals initially introduced nor the number of introduction steps appeared to consistently affect genetic diversity. We found evidence of genetic drift, inbreeding, and admixture in several populations as well as significant population structure. Analyses estimated two populations and 11 sub-clusters for N. bruchi and four populations and 23 sub-clusters for N. eichhorniae, indicating divergence of populations during and after introduction. Genetic differentiation and allocation of introduced populations to source populations generally supported the documented importation history and clarified pathways in cases where multiple introductions occurred. In populations with multiple introductions, genetic admixture may have buffered against the negative effects of serial bottlenecks on genetic diversity. The genetic data combined with the introduction history from this biological control study system provide insight on the accuracy of predicting introduction pathways from genetic data and the consequences of these pathways for the genetic variation and structure of introduced species.

3.
Ecol Evol ; 9(6): 3059-3074, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30962881

RESUMEN

Estuarine organisms grow in highly heterogeneous habitats, and their genetic differentiation is driven by selective and neutral processes as well as population colonization history. However, the relative importance of the processes that underlie genetic structure is still puzzling. Scirpus mariqueter is a perennial grass almost limited in the Changjiang River estuary and its adjacent Qiantang River estuary. Here, using amplified fragment length polymorphism (AFLP), a moderate-high level of genetic differentiation among populations (range F ST: 0.0310-0.3325) was showed despite large ongoing dispersal. FLOCK assigned all individuals to 13 clusters and revealed a complex genetic structure. Some genetic clusters were limited in peripheries compared with very mixing constitution in center populations, suggesting local adaptation was more likely to occur in peripheral populations. 21 candidate outliers under positive selection were detected, and further, the differentiation patterns correlated with geographic distance, salinity difference, and colonization history were analyzed with or without the outliers. Combined results of AMOVA and IBD based on different dataset, it was found that the effects of geographic distance and population colonization history on isolation seemed to be promoted by divergent selection. However, none-liner IBE pattern indicates the effects of salinity were overwhelmed by spatial distance or other ecological processes in certain areas and also suggests that salinity was not the only selective factor driving population differentiation. These results together indicate that geographic distance, salinity difference, and colonization history co-contributed in shaping the genetic structure of S. mariqueter and that their relative importance was correlated with spatial scale and environment gradient.

4.
Proc Biol Sci ; 280(1752): 20122552, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23222451

RESUMEN

Social structure involving long-term associations with relatives should facilitate the learning of complex behaviours such as long-distance migration. In and around Hudson Bay (Canada), three stocks of beluga whales form a panmictic unit, but have different migratory behaviours associated with different summering areas. We analysed genetic variation at 13 microsatellite loci among 1524 belugas, to test hypotheses about social structure in belugas. We found significant proportions of mother-offspring pairs throughout the migratory cycle, but average relatedness extended beyond close kinship only during migration. Average relatedness was significantly above random expectations for pairs caught at the same site but on different days or months of a year, suggesting that belugas maintain associations with a network of relatives during migration. Pairs involving a female (female-female or male-female) were on average more related than pairs of males, and males seemed to disperse from their matrilineal group to associate with other mature males. Altogether, our results indicate that relatives other than strictly parents, and especially females, play a role in maintaining a social structure that could facilitate the learning of migration routes. Cultural conservatism may limit contributions from nearby summer stocks to endangered stocks such as the Eastern Hudson Bay beluga.


Asunto(s)
Migración Animal , Ballena Beluga/fisiología , Polimorfismo Genético , Conducta Social , Animales , Bahías , Ballena Beluga/genética , Canadá , Núcleo Celular/genética , Femenino , Aprendizaje , Masculino , Repeticiones de Microsatélite , Factores Sexuales
5.
J Hered ; 103(5): 734-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615162

RESUMEN

Identifying groups of individuals forming coherent genetic clusters is relevant to many fields of biology. This paper addresses the K-partition problem: given a collection of genotypes, partition those genotypes into K groups, each group being a sample of the K source populations that are represented in the collection of genotypes. This problem involves allocating genotypes to genetic groups while building those groups at the same time without the use of any other a priori information. FLOCK is a non-Markov chain Monte Carlo (MCMC) algorithm that uses an iterative method to partition a collection of genotypes into k groups. Rules to estimate K are formulated and their validity firmly established by running simulations under several migration rates, migration regimes, number of loci, and values of K. FLOCK tended to build clusters largely consistent with the source samples. The performance of FLOCK was also compared with that of STRUCTURE and BAPS. FLOCK provided more accurate allocations to clusters and more reliable estimates of K; it also ran much faster than STRUCTURE. FLOCK is based on an entirely novel approach and provides a true alternative to the existing, MCMC based, algorithms. FLOCK v.2.0 for microsatellites or for AFLP markers can be downloaded from http://www.bio.ulaval.ca/no_cache/departement/professeurs/fiche_des_professeurs/professeur/11/13/.


Asunto(s)
Biología Computacional/métodos , Genética de Población , Algoritmos , Animales , Ballena Beluga/genética , Aves/genética , Simulación por Computador , Crustáceos/genética , Bases de Datos Factuales , Investigación Empírica , Peces/genética , Marcadores Genéticos , Variación Genética , Genotipo , Insectos/genética , Cadenas de Markov , Repeticiones de Microsatélite , Modelos Genéticos , Método de Montecarlo , Familia de Multigenes , Ratas , Reproducibilidad de los Resultados
6.
J Hered ; 99(3): 323-34, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18252730

RESUMEN

Validation of parental allocation using PAPA software (Duchesne P, Godbout MH, Bernatchez L. 2002. PAPA (package for the analysis of parental allocation): a computer program for simulated and real parental allocation. Mol Ecol Notes. 2:191-193.) was investigated under the assumption that only a small proportion of potential breeders contributed to the offspring sample. Inbreeding levels proved to have a large impact on allocation error rate. Consequently, simulations from artificial, unrelated parents may strongly underestimate allocation error, and so, whenever possible, simulations based on the actual parental genotypes should be run. An unexpected and interesting finding was that ambiguity (the highest likelihood is shared by several parental pairs) rates below 10% stood very close to exact allocation error rates (true proportions of wrong allocations). Hence, the ambiguity rate statistic may be viewed as a ready-made indicator of the resolution power of a specific parental allocation run and, if not exceeding 10%, used as an estimate of allocation error rate. It was found that the PAPA simulator, even with few contributing breeders, can be trusted to output reasonably accurate estimates of allocation error as long as those estimates do not exceed 15%. Indeed, most discrepancies between exact and estimated error then stood below 3%. Reproductive success variance had little impact on error estimate discrepancies within the same range. Finally, a (focal set) method was described to correct the estimated family sizes computed directly from parental allocations. Essentially, this method makes use of the detailed structure of the allocation probabilities associated with each parental pair with at least 1 allocated offspring. The allocation probabilities are expressed in matrix form, and the subsequent calculations are run based on standard matrix algebra. On average, this method provided better estimates of family sizes for each investigated combination of parameter values. As the size of offspring samples increased, the corrections improved until a plateau was finally reached. Typically, samples comprising 250, 500, and 1000 offspring would bring corrections in the order of 10-20%, 20-30%, and 30-40%, respectively.


Asunto(s)
Cruzamiento/métodos , Técnicas Genéticas , Programas Informáticos , Distribuciones Estadísticas , Algoritmos , Animales , Simulación por Computador , Femenino , Endogamia , Masculino , Repeticiones de Microsatélite , Modelos Genéticos , Distribución de Poisson , Trucha/genética , Incertidumbre
7.
Proc Biol Sci ; 274(1611): 779-87, 2007 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-17251114

RESUMEN

Low genetic diversity is predicted to negatively impact species viability and has been a central concern for conservation. In contrast, the possibility that some species may thrive in spite of a relatively poor diversity has received little attention. The wandering and Amsterdam albatrosses (Diomedea exulans and Diomedea amsterdamensis) are long-lived seabirds standing at an extreme along the gradient of life strategies, having traits that may favour inbreeding and low genetic diversity. Divergence time of the two species is estimated at 0.84 Myr ago from cytochrome b data. We tested the hypothesis that both albatrosses inherited poor genetic diversity from their common ancestor. Within the wandering albatross, per cent polymorphic loci and expected heterozygosity at amplified fragment length polymorphisms were approximately one-third of the minimal values reported in other vertebrates. Genetic diversity in the Amsterdam albatross, which is recovering from a severe bottleneck, was about twice as low as in the wandering albatross. Simulations supported the hypothesis that genetic diversity in albatrosses was already depleted prior to their divergence. Given the generally high breeding success of these species, it is likely that they are not suffering much from their impoverished diversity. Whether albatrosses are unique in this regard is unknown, but they appear to challenge the classical view about the negative consequences of genetic depletion on species survival.


Asunto(s)
Aves/genética , Polimorfismo Genético , Animales , Aves/clasificación , Aves/fisiología , Simulación por Computador , Heterocigoto , Modelos Biológicos , Filogenia
8.
Mol Ecol ; 15(13): 4193-202, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17054512

RESUMEN

It is generally assumed that larvae of benthic species are thoroughly mixed in the plankton and distributed randomly at settlement. Yet, it has also been hypothesized that a combination of larval gregarious behaviour coupled with particular oceanographic conditions may prevent larvae from mixing completely, and result in nonrandom spatial distributions following settlement. Using microsatellite markers, the main objective of this study was to investigate the occurrence of statistical connections between relatedness and settlement in the intertidal acorn barnacle from the Gulf of St Lawrence, Canada. A second objective was to test the hypothesis that patches of kin-related individuals came from a common parental site. Our results indicated that a significant number of barnacles within a given sample were more closely related than expected by chance despite the enormous potential for admixture during the planktonic phase. Thus, eight out of 37 samples analysed had relatedness values significantly higher than expected from random settlement. Moreover, analyses of sibship network construction and network complexity tests provided evidence for the occurrence of networks within several samples that were characterized by strong connections among individuals. Thus, nonrandom planktonic dispersal associated with relatively stable oceanic currents, as well as additional ecological factors to be rigorously investigated (e.g. behavioural mechanisms), may be more important in determining patterns of genetic structure in marine benthic invertebrates than generally assumed. Therefore, documenting genetic patterns associated with kin aggregation should be a fruitful and an important avenue for future studies in marine invertebrates.


Asunto(s)
Genética de Población , Thoracica/genética , Animales , Conducta Animal , Canadá , Heterocigoto , Repeticiones de Microsatélite , Linaje , Agua de Mar
9.
Mol Ecol ; 14(10): 3133-46, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16101779

RESUMEN

Few studies have critically investigated the genetic composition of wild fish schools. Yet, such investigations may have profound implications for the understanding of social organization and population differentiation in both fundamental and applied research. Using 20 microsatellite loci, we investigated the composition of 53 schools (total n = 211) of adult and subadult migratory brook charr (Salvelinus fontinalis) sampled from the known feeding areas of two populations inhabiting Mistassini Lake (Québec, Canada). We specifically tested whether (i) school members originated from the same population, (ii) individuals from the same population within schools were kin (half- or full-siblings), and (iii) kin schooling relationships differed between sexes. Randomization tests revealed a tendency for most schools to be population specific, although some schools were population mixtures. Significantly more kin were found within schools than expected at random for both populations (approximately 21-34% of the total number of school members). This result, combined with the observed size range of individuals, indicated that stable associations between kin may occur beyond juvenile stages for up to 4 years. Nevertheless, a high proportion of school members were non-kin (approximately 66-79%). No differences were detected between sexes in the propensity to school with kin. We discuss the hypothesis that the stable kin groups, rather than arising from kin selection, may instead be a by-product of familiarity based on individual selection for the maintenance of local adaptations related to migration (natal and feeding area philopatry). Our results are noteworthy because they suggest that there is some degree of permanence in the composition of wild fish schools. Additionally, they support the hypothesis that schools can be hierarchically structured (from population members down to family groups) and are thus nonrandom genetic entities.


Asunto(s)
Migración Animal/fisiología , Conducta Animal/fisiología , Trucha/genética , Alelos , Animales , ADN/química , ADN/genética , Femenino , Agua Dulce , Variación Genética , Genética de Población , Masculino , Repeticiones de Microsatélite , Dinámica Poblacional , Quebec , Trucha/fisiología
10.
Mol Ecol ; 12(7): 1979-91, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12803646

RESUMEN

Individual-based population assignment tests have thus far mainly relied on the use of microsatellite loci. However, the logistic difficulty of screening large numbers of loci required to reach sufficient statistical power hampers the usefulness of microsatellites in situations of weak population structuring. Amplified fragment length polymorphisms (AFLP) represents an alternative for overcoming this logistical issue as the technique allows the user to characterize a much larger number of loci with a comparable analytical effort. In this study, an assignment test based on maximum likelihood for dominant markers was used to investigate the potential usefulness of AFLP for population assignment. We also compared assignment success achieved with AFLP with that obtained using microsatellites in a case study of low population differentiation involving whitefish (Coregonus clupeaformis) sympatric ecotypes. The analytical investigation showed that the minimum number of AFLP loci required to reach an assignment success of 95% stood within values that are easily achievable in many situations. This also showed how assignment success varied according to the number of AFLP loci used, their absolute frequency and their frequency differential and sampling errors, as well as the number of putative source populations. The case study showed that given a comparable analytical effort in the laboratory, AFLP were much more efficient than the microsatellite loci in discriminating the source of an individual among putative populations. AFLP resulted in higher assignment success at all levels of stringency and the log-likelihood differences between populations obtained with AFLP for each individual were much larger than those obtained with microsatellites. These results indicate that research involving individual-based population assignment methods should benefit importantly from the use of AFLP markers, especially in systems characterized by weak population structuring.


Asunto(s)
Genética de Población/métodos , Repeticiones de Microsatélite/genética , Modelos Genéticos , Polimorfismo de Longitud del Fragmento de Restricción , Interpretación Estadística de Datos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...