Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biodivers Data J ; 11: e91496, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761079

RESUMEN

The Kalkalpen National Park is situated in Upper Austria and contains more than 800 springs. The international importance of this Park is, from the perspective of nature conservation directives, highly significant (European Nature Reserve Natura 2000, recognised wetland of the Ramsar convention). In the current study, the hydrobioid fauna ('spring snails') of the Kalkalpen National Park was evaluated. These tiny snails are difficult to determine; however, their investigation is especially desirable, as several species are threatened and as they are important for water quality assessment. Snails collected in 39 selected springs were examined with classical morphological methods (shell and genital anatomy) and, subsequently, by DNA analysis. For this task, the DNA barcode, a partial sequence of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene (length of the sequence 658-682 bp), was PCR amplified and sequenced. From 107 specimens, the DNA barcoding sequence could be obtained and compared with already existing DNA sequences. The (sub)endemic species Bythinellaconica, Hauffeniakerschneri, Hauffeniawienerwaldensis and Belgrandiellaaulaei could be clearly identified. For Bythiospeumnocki, despite the ambitious collecting effort, only empty shells were found in four springs (including the locus typicus spring) in the Park and its surroundings. The genus Bythinella was detected in 36 springs. From 25 of these localities, DNA barcodes could be created, which matches those of Bythinellaconica (comparison data from ABOL). It is, therefore, concluded that the species occurs widely in the Kalkalpen National Park. The genus Hauffenia was sampled from 16 springs. From one, the haplotype of Hauffeniawienerwaldensis could be identified (spring is 5 km outside the Park) and from six, the haplotype of Hauffeniakerschneri. Belgrandiellaaulaei was found in three springs, which all lie outside the boundaries and are, therefore, not included in the protection measures of the National Park. The data and analyses obtained contribute to the assessment of the taxonomic status of the species studied. The present study gives a good baseline for further monitoring of the hydrobioids in the Kalkalpen National Park, which is important to evaluate current as well as to decide on future protection measures for this group.

2.
Pathogens ; 9(12)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322102

RESUMEN

Canine and feline cardiorespiratory parasites are of utmost relevance in veterinary medicine. Key epizootiological information on major pet metastrongyloids, i.e., Angiostrongylus vasorum and Crenosoma vulpis infecting dogs, and Aelurostrongylus abstrusus and Troglostrongylus brevior infecting cats, is missing from Austria. This study investigated their occurrence in 1320 gastropods collected in the Austrian provinces of Styria, Burgenland, Lower Austria, and in metropolitan Vienna. Metastrongyloid larvae were microscopically detected in 25 samples, and sequence analysis confirmed the presence of metastrongyloids in nine samples, i.e., A. vasorum in one slug (Arion vulgaris) (0.07%), C. vulpis in five slugs (one Limax maximus and four A. vulgaris) (0.4%), A. abstrusus in two A. vulgaris (0.17%), and the hedgehog lungworm Crenosoma striatum was detected in one A. vulgaris. The present study confirms the enzooticity of major cardiorespiratory nematodes in Austria and that canine and feline populations are at risk of infection.

3.
Parasitol Res ; 119(12): 4135-4141, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33150513

RESUMEN

Avian schistosomes are of medical and veterinary importance as they are responsible for the annually occurring cercarial dermatitis outbreaks. For Austria, so far, only Trichobilharzia szidati Neuhaus 1952 was confirmed on species level as causative agent of cercarial dermatitis. Here we present the first record of Trichobilharzia franki Müller & Kimmig 1994 in Austria. The species was detected during a survey of digenean trematodes in Upper Austrian water bodies. Furthermore, we provide DNA barcodes of T. franki as well as measurements of several parasite individuals to indicate the intraspecific diversity. We also recommend the usage of an alternative primer pair, since the "standard COI primer pair" previously used for Schistosomatidae amplified an aberrant fragment in the sequence of T. franki. Overall, our study shows how limited our knowledge about occurrence and distribution of avian schistosomes in Austria is and how important it is to acquire such a knowledge to estimate ecological and epidemiological risks in the future.


Asunto(s)
Dermatitis/parasitología , Schistosomatidae/aislamiento & purificación , Esquistosomiasis/veterinaria , Enfermedades Cutáneas Parasitarias/parasitología , Caracoles/parasitología , Animales , Auricularia , Austria , Enfermedades de las Aves/parasitología , Aves/parasitología , Brotes de Enfermedades , Schistosomatidae/genética , Esquistosomiasis/parasitología , Enfermedades Cutáneas Parasitarias/veterinaria
4.
J Zool Syst Evol Res ; 58(4): 982-1004, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34853493

RESUMEN

The Austrian endemic land snail species Noricella oreinos (formerly Trochulus oreinos) occurs in the Northeastern Calcareous Alps at high elevations. Two morphologically highly similar subspecies N. o. oreinos and N. o. scheerpeltzi have been described. First analyses of mitochondrial and nuclear marker sequences indicated a high genetic divergence between them. In the present study, we aimed to assess gene flow between the two subspecies which should help to re-evaluate their taxonomic status. Sequence data and amplified fragment length polymorphism (AFLP) markers of 255 Noricella specimens covering the whole distribution range were analyzed. A clear geographic separation was found within the potential contact zone, the Haller Mauern mountain range. Samples of all western sites were part of the clade representing N. o. scheerpeltzi and almost all samples from the eastern sites clustered with N. o. oreinos. However, within two sampling sites of the eastern Haller Mauern, a few individuals possessed a COI sequence matching the N. o. oreinos clade whereas at the ITS2 locus they were heterozygous possessing the alleles of both taxa. Contrary to the ITS2 results indicating historical and/or ongoing hybridization, AFLP analyses of 202 individuals confirmed a clear separation of the two taxa congruent with the mitochondrial data. Although they occur on the same mountain range without any physical barrier, no indication of ongoing gene flow between the two taxa was found. Thus, we conclude that the two taxa are separate species N. oreinos and N. scheerpeltzi.

5.
BMC Evol Biol ; 17(1): 138, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28610555

RESUMEN

BACKGROUND: Cylindrus obtusus is one of the most prominent endemic snail species of the Eastern Alps. It is restricted to alpine meadows and calcareous rocky habitats above 1500 m. Peculiar intraspecific differences have been observed in its genital tract in the eastern populations the two mucus glands associated with the love dart sac are highly variable, while almost no variation was observed in the western populations. This raises the question whether the mode and success of reproduction of the respective populations are different. To find out whether these anatomical differences reflect genetic differentiation, which might be an indication for distinct glacial refugia, we investigated a 650 bp fragment of the mitochondrial cytochrome oxidase subunit 1 gene (COI) (280 individuals) and 9 microsatellite loci from samples (487 individuals from 29 populations) covering the whole distribution range of the species. RESULTS: The COI sequences show a geographic differentiation between eastern, central and western populations. The westernmost localities, which were covered under ice sheets during glacial periods, are characterized by extreme low variability. Overall genetic distances among all individuals are small (max. 1.7% p-distance). The microsatellite analysis reveals a high differentiation between populations, implying restriction of gene flow. The highest genetic variability was found in the central populations. Remarkably, nearly all individuals from the eastern populations, which are more variable in their genital morphology, are homozygous in all microsatellite loci, although different alleles were found within populations. CONCLUSIONS: The most peculiar outcome of the study is the strong evidence for selfing in C. obtusus as indicated by the microsatellite data in the easternmost populations. This finding is supported by the deformation of the mucus glands in the same populations. Since mucus glands play an important role in sexual reproduction, it seems plausible that in selfing organisms these structures are reduced. The phylogeographic structure revealed by COI sequences implies that the species has survived the ice ages within the Calcareous Alps. The small genetic distances among all individuals (max. 1.7%) suggest that C. obtusus has experienced severe bottlenecks in the past.


Asunto(s)
Variación Genética , Caracoles/genética , Animales , Evolución Biológica , ADN Mitocondrial/genética , Ecosistema , Complejo IV de Transporte de Electrones/genética , Europa (Continente) , Flujo Génico , Cubierta de Hielo , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Caracoles/fisiología
6.
BMC Evol Biol ; 14: 223, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25359314

RESUMEN

BACKGROUND: The Central and Southern European mountain ranges represent important biodiversity hotspots and show high levels of endemism. In the land snail genus Orcula Held, 1837 nine species are distributed in the Alps and a few taxa inhabit the Carpathians, the Dinarids and the Western Black Sea region. In order to elucidate the general patterns of temporal and geographic diversification, mitochondrial and nuclear markers were analyzed in all 13 Orcula species. We particularly aimed to clarify whether the Alpine taxa represent a monophyletic group and if the local species diversity is rather the result of isolation in geographically separated Pleistocene glacial refuges or earlier Tertiary and Quaternary palaeogeographic events. In order to test if patterns of molecular genetic and morphological differentiation were congruent and/or if hybridization had occurred, shell morphometric investigations were performed on the Orcula species endemic to the Alps. RESULTS: The phylogenetic trees resulting from the analyses of both the mitochondrial (COI, 12S and 16S) and the nuclear (H4/H3) data sets revealed three main groups, which correspond to the three subgenera Orcula, Illyriobanatica and Hausdorfia. The reconstruction of the historic geographic ranges suggested that the genus originated in the Dinarides during the Middle Miocene and first colonized the Alps during the Late Miocene, giving rise to the most diverse subgenus Orcula. Within the latter subgenus (including all Alpine endemics) almost all species were differentiated by both molecular genetic markers and by shell morphometrics, except O. gularis and O. pseudodolium. CONCLUSIONS: The present study confirms the importance of the Alps as biodiversity hotspot and origin center of land snail diversity. The species diversity in the subgenus Orcula was likely promoted by Miocene to Pliocene palaeogeographic events and the insular distribution of preferred limestone areas. In some cases, speciation events could be linked to the divergence of populations in glacial refuges during the Pleistocene. Sporadic contact between geographically separated and reproductively not yet isolated populations led to intermixture of haplogroups within species and even hybridization and mitochondrial capture between species.


Asunto(s)
Especiación Genética , Caracoles/clasificación , Caracoles/genética , Animales , Biodiversidad , Hibridación Genética , Mitocondrias/genética , Filogenia , Filogeografía
7.
J Molluscan Stud ; 80(4): 371-387, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25364084

RESUMEN

In this study we investigated the morphology and ecology of representatives of the taxonomically ambiguous genus Trochulus. The main focus was on the T. hispidus complex, which comprises several genetically highly divergent mitochondrial clades, as determined in a parallel molecular genetic study. We analysed shell morphology and anatomical traits and asked whether the clades are differentiated in these characters. In addition, the related species T. oreinos and T. striolatus were investigated and compared with the T. hispidus complex. Finally, we compared the ecological requirements of the taxa. Among the genetic clades of the T. hispidus complex there was no clear morphological differentiation and geographic populations could not be distinguished based on their morphology. The investigated characters of the genital anatomy did not allow discrimination of any of the T. hispidus clades and were not even diagnostic for the group as a whole. The morphotype of T. sericeus is present in all clades and thus cannot be assigned to a genetic group or any specific population. Thus, our morphological data do not provide evidence that any of the mitochondrial T. hispidus clades represent separate species. Concerning interspecific delimitation, the T. hispidus complex was clearly differentiated from T. striolatus and T. oreinos by shell morphological and anatomical characters, e.g. sculpture of shell surface and details of the penis. Finally, the habitat of T. oreinos is different from those of the other two species. In contrast to the lack of correspondence between genetic and morphological differentiation within the T. hispidus complex, related species display intraspecific morphological differentiation corresponding with mitochondrial clades: within T. striolatus there was a slight morphological differentiation between the subspecies T. s. striolatus, T. s. juvavensis and T. s. danubialis. The two subspecies of T. oreinos could be discriminated by a small but consistent difference in the cross-section of the penis. The unequal levels of intraspecific differentiation are caused by different evolutionary histories as a consequence of disparities in ecological demands, dispersal ability and use of glacial refugia: both the T. hispidus complex and T. striolatus are fast-spreading, euryoecious organisms which are able to (re-)colonize habitats and survive under different climate conditions. While the T. hispidus complex probably survived the Pleistocene in several glacial refugia, for T. striolatus one glacial refugium is suggested. Trochulus oreinos differs from the other taxa, as it is a slow disperser with a narrow ecological niche. We suggest that its subspecies spent at least the last glaciation in or close to the presently inhabited areas.

8.
Zool Scr ; 43(3): 273-288, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25170185

RESUMEN

Delimitation of species is often complicated by discordance of morphological and genetic data. This may be caused by the existence of cryptic or polymorphic species. The latter case is particularly true for certain snail species showing an exceptionally high intraspecific genetic diversity. The present investigation deals with the Trochulus hispidus complex, which has a complicated taxonomy. Our analyses of the COI sequence revealed that individuals showing a T. hispidus phenotype are distributed in nine highly differentiated mitochondrial clades (showing p-distances up to 19%). The results of a parallel morphometric investigation did not reveal any differentiation between these clades, although the overall variability is quite high. The phylogenetic analyses based on 12S, 16S and COI sequences show that the T. hispidus complex is paraphyletic with respect to several other morphologically well-defined Trochulus species (T. clandestinus, T. villosus, T. villosulus and T. striolatus) which form well-supported monophyletic groups. The nc marker sequence (5.8S-ITS2-28S) shows only a clear separation of T. o. oreinos and T. o. scheerpeltzi, and a weakly supported separation of T. clandestinus, whereas all other species and the clades of the T. hispidus complex appear within one homogeneous group. The paraphyly of the T. hispidus complex reflects its complicated history, which was probably driven by geographic isolation in different glacial refugia and budding speciation. At our present state of knowledge, it cannot be excluded that several cryptic species are embedded within the T. hispidus complex. However, the lack of morphological differentiation of the T. hispidus mitochondrial clades does not provide any hints in this direction. Thus, we currently do not recommend any taxonomic changes. The results of the current investigation exemplify the limitations of barcoding attempts in highly diverse species such as T. hispidus.

9.
PLoS One ; 9(5): e96012, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24804706

RESUMEN

Harboring a large number of endemic species, the Alps and the Western Carpathians are considered as major centers of biodiversity. Nonetheless, the general opinion until the turn of the millennium was that both Central European mountain regions did not provide suitable habitat during the Last Glacial Maximum, but were colonized later from southern refuges. However, recent molecular genetic studies provide new evidence for peripheral Alpine refuges. We studied the phylogeography of the calciphilous land snail O. dolium across its distribution in the Alps and the Western Carpathians to assess the amount of intraspecific differentiation and to detect potential glacial refuges. A partial sequence of the mitochondrial COI was analyzed in 373 specimens from 135 sampling sites, and for a subset of individuals, partial sequences of the mitochondrial 16S and the nuclear histone H3 and H4 were sequenced. A molecular clock analysis was combined with a reconstruction of the species' geographic range history to estimate how its lineages spread in the course of time. In order to obtain further information on the species' past distribution, we also screened its extensive Pleistocene fossil record. The reconstruction of geographic range history suggests that O. dolium is of Western Carpathian origin and diversified already around the Miocene-Pliocene boundary. The fossil record supports the species' presence at more than 40 sites during the last glacial and earlier cold periods, most of them in the Western Carpathians and the Pannonian Basin. The populations of O. dolium display a high genetic diversity with maximum intraspecific p-distances of 18.4% (COI) and 14.4% (16S). The existence of various diverged clades suggests the survival in several geographically separated refuges. Moreover, the sequence patterns provide evidence of multiple migrations between the Alps and the Western Carpathians. The results indicate that the Southern Calcareous Alps were probably colonized only during the Holocene.


Asunto(s)
Fósiles , Caracoles/genética , Animales , Variación Genética , Análisis de Secuencia de ADN/métodos , Caracoles/clasificación
10.
J Molluscan Stud ; 77(1): 30-40, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25197157

RESUMEN

Trochulus oreinos oreinos and T. oreinos scheerpeltzi are two land snail taxa endemic to the Northeastern Austrian Alps, which have been regarded as subspecies of the highly variable, widespread land snail T. hispidus. We analysed these three taxa morphologically and genetically to evaluate whether a delimitation between them is possible and, if so, to resolve their phylogenetic relationships. Shell morphological results revealed high similarity between the two T. oreinos taxa, and that they are clearly separated from T. hispidus. Additionally, the T. oreinos subspecies concur with respect to their habitat preferences, as they are both restricted to rocky high alpine areas, whereas the local form of T. hispidus is distributed over a wider altitudinal range in moist areas and scrubby perennial herb vegetation near water bodies. While the morphological and ecological results allow clear differentiation between T. hispidus and T. oreinos only, analyses of the mitochondrial cytochrome c oxidase subunit I and 16S rRNA genes revealed high sequence divergences between all three taxa, which indicates that they represent old lineages. The two T. oreinos taxa appear as distantly related sister groups, well separated from T. hispidus. Whether T. o. oreinos and T. o. scheerpeltzi should be considered as species cannot be decided at the current state of knowledge.

11.
Eco Mont ; 2(2): 5-12, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25729612

RESUMEN

The habitat needs and potential threats to Trochulus oreinos oreinos (Wagner 1915) and Cylindrus obtusus (Draparnaud 1805) were assessed by comparing vegetation maps and our own records. We selected four sites from which we had adequate samples and for which exact vegetation maps were available: the mountains Hoch-schwab, Schneealpe, Rax and Schneeberg. Both taxa prefer open dry alpine grassland with diggable soil and/or stones. T. oreinos oreinos is restricted to subalpine and alpine boulder societies and Caricetum firmae. While C. obtusus dwells on several communities of plants, it seems to be bound to unconsolidated stony ground. As both taxa prefer naturally forest-free areas, they are not affected by structural changes of the habitat, such as reforestation caused by the abandonment of grazing and the shift of vegetation zones. But it has to be considered that T. oreinos oreinos and C. obtusus are limited by microclimatic factors, as they prefer cooler habitats. The mountains Schneealpe, Rax and Schneeberg, reaching barely 2000 m in height, are on the climatic limit of the species distribution. Therefore, the investigated taxa are vulnerable to the upward shift of climate zones. T. oreinos oreinos shows striking similarities in its habitat preference to the Swiss endemic T. biconicus, as both taxa prefer the same dry alpine habitats which are quite different to those of other representatives of the genus, which prefer damp habitats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...