Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 532(3): e25603, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38497661

RESUMEN

Prairie voles (Microtus ochrogaster) and Syrian, or golden, hamsters (Mesocricetus auratus) are closely related to mice (Mus musculus) and are commonly used in studies of social behavior including social interaction, social memory, and aggression. Hippocampal area CA2 is known to play a key role in these behaviors in mice and responds to social stimuli in rats, but CA2 has yet to be characterized in hamsters or voles, which are also used in studies of social behaviors. Here, we used immunofluorescence to determine whether CA2 could be molecularly identified in tissue from voles and hamsters. We found that  staining for many CA2 markers was similar in these three species, with labeling seen in neurons at the distal end of the mossy fibers . In contrast, although perineuronal nets (PNNs) surround CA2 cells in mice, PNN staining differed across species. In voles, both CA2 and CA3 were labeled, whereas in hamsters, labeling was seen primarily in CA3. These results demonstrate that CA2 can be molecularly distinguished from neighboring CA1 and CA3 areas in voles and hamsters with several antibodies commonly used in mice. However, PNN staining is not useful for identifying CA2 in voles or hamsters, suggestive of differing roles for either PNNs or for the hippocampal subregions in social behavior. These findings reveal commonalities across species in the molecular profile of CA2 and should facilitate future studies of CA2 in these species.


Asunto(s)
Encéfalo , Conducta Social , Cricetinae , Ratones , Ratas , Animales , Anticuerpos , Arvicolinae , Hipocampo
2.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405991

RESUMEN

Prairie voles (Microtus ochrogaster) and Syrian, or golden, hamsters (Mesocricetus auratus) are closely related to mice (Mus musculus) and rats (Rattus norvegicus, for example) and are commonly used in studies of social behavior including social interaction, social memory, and aggression. The CA2 region of the hippocampus is known to play a key role in social memory and aggression in mice and responds to social stimuli in rats, likely owing to its high expression of oxytocin and vasopressin 1b receptors. However, CA2 has yet to be identified and characterized in hamsters or voles. In this study, we sought to determine whether CA2 could be identified molecularly in vole and hamster. To do this, we used immunofluorescence with primary antibodies raised against known molecular markers of CA2 in mice and rats to stain hippocampal sections from voles and hamsters in parallel with those from mice. Here, we report that, like in mouse and rat, staining for many CA2 proteins in vole and hamster hippocampus reveals a population of neurons that express regulator of G protein signaling 14 (RGS14), Purkinje cell protein 4 (PCP4) and striatal-enriched protein tyrosine phosphatase (STEP), which together delineate the borders with CA3 and CA1. These cells were located at the distal end of the mossy fiber projections, marked by the presence of Zinc Transporter 3 (ZnT-3) and calbindin in all three species. In addition to staining the mossy fibers, calbindin also labeled a layer of CA1 pyramidal cells in mouse and hamster but not in vole. However, Wolframin ER transmembrane glycoprotein (WFS1) immunofluorescence, which marks all CA1 neurons, was present in all three species and abutted the distal end of CA2, marked by RGS14 immunofluorescence. Staining for two stress hormone receptors-the glucocorticoid (GR) and mineralocorticoid (MR) receptors-was also similar in all three species, with GR staining found primarily in CA1 and MR staining enriched in CA2. Interestingly, although perineuronal nets (PNNs) are known to surround CA2 cells in mouse and rat, we found that staining for PNNs differed across species in that both CA2 and CA3 showed staining in voles and primarily CA3 in hamsters with only some neurons in proximal CA2 showing staining. These results demonstrate that, like in mouse, CA2 in voles and hamsters can be molecularly distinguished from neighboring CA1 and CA3 areas, but PNN staining is less useful for identifying CA2 in the latter two species. These findings reveal commonalities across species in molecular profile of CA2, which will facilitate future studies of CA2 in these species. Yet to be determined is how differences in PNNs might relate to differences in social behavior across species.

3.
Hippocampus ; 33(6): 700-711, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37159095

RESUMEN

Since 1959, the Russian Farm-Fox study has bred foxes to be either tame or, more recently, aggressive, and scientists have used them to gain insight into the brain structures associated with these behavioral features. In mice, hippocampal area CA2 has emerged as one of the essential regulators of social aggression, and so to eventually determine whether we could identify differences in CA2 between tame and aggressive foxes, we first sought to identify CA2 in foxes (Vulpes vulpes). As no clearly defined area of CA2 has been described in species such as cats, dogs, or pigs, it was not at all clear whether CA2 could be identified in foxes. In this study, we cut sections of temporal lobes from male and female red foxes, perpendicular to the long axis of the hippocampus, and stained them with markers of CA2 pyramidal cells commonly used in tissue from rats and mice. We observed that antibodies against Purkinje cell protein 4 best stained the pyramidal cells in the area spanning the end of the mossy fibers and the beginning of the pyramidal cells lacking mossy fibers, resembling the pattern seen in rats and mice. Our findings indicate that foxes do have a "molecularly defined" CA2, and further, they suggest that other carnivores like dogs and cats might as well. With this being the case, these foxes could be useful in future studies looking at CA2 as it relates to aggression.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Animales , Femenino , Masculino , Perros , Gatos , Ratones , Ratas , Porcinos , Zorros , Encéfalo , Hipocampo
4.
Hippocampus ; 33(6): 730-744, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36971428

RESUMEN

Pyramidal cells in hippocampal area CA2 have synaptic properties that are distinct from the other CA subregions. Notably, this includes a lack of typical long-term potentiation of stratum radiatum synapses. CA2 neurons express high levels of several known and potential regulators of metabotropic glutamate receptor (mGluR)-dependent signaling including Striatal-Enriched Tyrosine Phosphatase (STEP) and several Regulator of G-protein Signaling (RGS) proteins, yet the functions of these proteins in regulating mGluR-dependent synaptic plasticity in CA2 are completely unknown. Thus, the aim of this study was to examine mGluR-dependent synaptic depression and to determine whether STEP and the RGS proteins RGS4 and RGS14 are involved. Using whole cell voltage-clamp recordings from mouse pyramidal cells, we found that mGluR agonist-induced long-term depression (mGluR-LTD) is more pronounced in CA2 compared with that observed in CA1. This mGluR-LTD in CA2 was found to be protein synthesis and STEP dependent, suggesting that CA2 mGluR-LTD shares mechanistic processes with those seen in CA1, but in addition, RGS14, but not RGS4, was essential for mGluR-LTD in CA2. In addition, we found that exogenous application of STEP could rescue mGluR-LTD in RGS14 KO slices. Supporting a role for CA2 synaptic plasticity in social cognition, we found that RGS14 KO mice had impaired social recognition memory as assessed in a social discrimination task. These results highlight possible roles for mGluRs, RGS14, and STEP in CA2-dependent behaviors, perhaps by biasing the dominant form of synaptic plasticity away from LTP and toward LTD in CA2.


Asunto(s)
Proteínas RGS , Receptores de Glutamato Metabotrópico , Animales , Ratones , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
5.
Hippocampus ; 33(3): 133-149, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36762588

RESUMEN

Hippocampal area CA2 is a molecularly and functionally distinct region of the hippocampus that has classically been defined as the area with large pyramidal neurons lacking input from the dentate gyrus and the thorny excrescences (TEs) characteristic of CA3 neurons. A modern definition of CA2, however, makes use of the expression of several molecular markers that distinguish it from neighboring CA3 and CA1. Using immunohistochemistry, we sought to characterize the staining patterns of commonly used CA2 markers along the dorsal-ventral hippocampal axis and determine how these markers align along the proximodistal axis. We used a region of CA2 that stained for both Regulator of G-protein Signaling 14 (RGS14) and Purkinje Cell Protein 4 (PCP4; "double-labeled zone" [DLZ]) as a reference. Here, we report that certain commonly used CA2 molecular markers may be better suited for drawing distinct boundaries between CA2/3 and CA2/1. For example, RGS14+ and STEP+ neurons showed minimal to no extension into area CA1 while areas stained with VGluT2 and Wisteria Floribunda agglutinin were consistently smaller than the DLZ/CA2 borders by ~100 µ on the CA1 or CA3 sides respectively. In addition, these patterns are dependent on position along the dorsal-ventral hippocampal axis such that PCP4 labeling often extended beyond the distal border of the DLZ into CA1. Finally, we found that, consistent with previous findings, mossy fibers innervate a subset of RGS14 positive neurons (~65%-70%) and that mossy fiber bouton number and relative size in CA2 are less than that of boutons in CA3. Unexpectedly, we did find evidence of some complex spines on apical dendrites in CA2, though much fewer in number than in CA3. Our results indicate that certain molecular markers may be better suited than others when defining the proximal and distal borders of area CA2 and that the presence or absence of complex spines alone may not be suitable as a distinguishing feature differentiating CA3 from CA2 neurons.


Asunto(s)
Hipocampo , Proteínas RGS , Ratones , Animales , Hipocampo/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Inmunohistoquímica , Proteínas RGS/metabolismo
7.
J Clin Invest ; 131(16)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34228646

RESUMEN

Perineuronal nets (PNNs), a specialized form of extracellular matrix, are abnormal in the brains of people with Rett syndrome (RTT). We previously reported that PNNs function to restrict synaptic plasticity in hippocampal area CA2, which is unusually resistant to long-term potentiation (LTP) and has been linked to social learning in mice. Here we report that PNNs appear elevated in area CA2 of the hippocampus of an individual with RTT and that PNNs develop precociously and remain elevated in area CA2 of a mouse model of RTT (Mecp2-null). Further, we provide evidence that LTP could be induced at CA2 synapses prior to PNN maturation (postnatal day 8-11) in wild-type mice and that this window of plasticity was prematurely restricted at CA2 synapses in Mecp2-null mice. Degrading PNNs in Mecp2-null hippocampus was sufficient to rescue the premature disruption of CA2 plasticity. We identified several molecular targets that were altered in the developing Mecp2-null hippocampus that may explain aberrant PNNs and CA2 plasticity, and we discovered that CA2 PNNs are negatively regulated by neuronal activity. Collectively, our findings demonstrate that CA2 PNN development is regulated by Mecp2 and identify a window of hippocampal plasticity that is disrupted in a mouse model of RTT.


Asunto(s)
Región CA2 Hipocampal/fisiopatología , Proteína 2 de Unión a Metil-CpG/deficiencia , Síndrome de Rett/fisiopatología , Animales , Región CA2 Hipocampal/patología , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Matriz Extracelular/fisiología , Humanos , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/fisiología , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas , Síndrome de Rett/genética , Síndrome de Rett/patología
8.
Cell Rep ; 35(9): 109185, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077736

RESUMEN

Responding to different dynamic levels of stress is critical for mammalian survival. Disruption of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) signaling is proposed to underlie hypothalamic-pituitary-adrenal (HPA) axis dysregulation observed in stress-related psychiatric disorders. In this study, we show that FK506-binding protein 51 (FKBP5) plays a critical role in fine-tuning MR:GR balance in the hippocampus. Biotinylated-oligonucleotide immunoprecipitation in primary hippocampal neurons reveals that MR binding, rather than GR binding, to the Fkbp5 gene regulates FKBP5 expression during baseline activity of glucocorticoids. Notably, FKBP5 and MR exhibit similar hippocampal expression patterns in mice and humans, which are distinct from that of the GR. Pharmacological inhibition and region- and cell type-specific receptor deletion in mice further demonstrate that lack of MR decreases hippocampal Fkbp5 levels and dampens the stress-induced increase in glucocorticoid levels. Overall, our findings demonstrate that MR-dependent changes in baseline Fkbp5 expression modify GR sensitivity to glucocorticoids, providing insight into mechanisms of stress homeostasis.


Asunto(s)
Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Estrés Fisiológico , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Células Cultivadas , Eliminación de Gen , Regulación de la Expresión Génica , Hipocampo/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Proteínas de Unión a Tacrolimus/genética
9.
Brain Pathol ; 31(3): e12936, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629462

RESUMEN

Explosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries. Highly controlled detonations of small, 1.7-gram RDX spherical charges reduced synaptic markers known to be downregulated in cognitive disorders, but without causing overt neuronal loss or astroglial responses. In the absence of neuromorphological alterations, levels of synaptophysin, GluA1, and synapsin IIb were significantly diminished within 24 hr, and these synaptic components exhibited progressive reductions following blast exposure as compared to their stable maintenance in control explants. In contrast, labeling of the synapsin IIa isoform remained unaltered, while neuropilar staining of other markers decreased, including synapsin IIb and neural cell adhesion molecule (NCAM) isoforms, along with evidence of NCAM proteolytic breakdown. NCAM180 displayed a distinct decline after the RDX blasts, whereas NCAM140 and NCAM120 exhibited smaller or no deterioration, respectively. Interestingly, the extent of synaptic marker reduction correlated with AT8-positive tau levels, with tau pathology stochastically found in CA1 neurons and their dendrites. The decline in synaptic components was also reflected in the size of evoked postsynaptic currents recorded from CA1 pyramidals, which exhibited a severe and selective reduction. The identified indicators of blast-mediated synaptopathy point to the need for early biomarkers of explosives altering synaptic integrity with links to dementia risk, to advance strategies for both cognitive health and therapeutic monitoring.


Asunto(s)
Traumatismos por Explosión/patología , Demencia/patología , Hipocampo/patología , Personal Militar/psicología , Astrocitos/patología , Traumatismos por Explosión/metabolismo , Traumatismos por Explosión/psicología , Lesiones Encefálicas/patología , Trastornos del Conocimiento/patología , Humanos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/patología
10.
J Biol Chem ; 296: 100024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33410399

RESUMEN

The human genome contains vast genetic diversity as naturally occurring coding variants, yet the impact of these variants on protein function and physiology is poorly understood. RGS14 is a multifunctional signaling protein that suppresses synaptic plasticity in dendritic spines of hippocampal neurons. RGS14 also is a nucleocytoplasmic shuttling protein, suggesting that balanced nuclear import/export and dendritic spine localization are essential for RGS14 functions. We identified genetic variants L505R (LR) and R507Q (RQ) located within the nuclear export sequence (NES) of human RGS14. Here we report that RGS14 encoding LR or RQ profoundly impacts protein functions in hippocampal neurons. RGS14 membrane localization is regulated by binding Gαi-GDP, whereas RGS14 nuclear export is regulated by Exportin 1 (XPO1). Remarkably, LR and RQ variants disrupt RGS14 binding to Gαi1-GDP and XPO1, nucleocytoplasmic equilibrium, and capacity to inhibit long-term potentiation (LTP). Variant LR accumulates irreversibly in the nucleus, preventing RGS14 binding to Gαi1, localization to dendritic spines, and inhibitory actions on LTP induction, while variant RQ exhibits a mixed phenotype. When introduced into mice by CRISPR/Cas9, RGS14-LR protein expression was detected predominantly in the nuclei of neurons within hippocampus, central amygdala, piriform cortex, and striatum, brain regions associated with learning and synaptic plasticity. Whereas mice completely lacking RGS14 exhibit enhanced spatial learning, mice carrying variant LR exhibit normal spatial learning, suggesting that RGS14 may have distinct functions in the nucleus independent from those in dendrites and spines. These findings show that naturally occurring genetic variants can profoundly alter normal protein function, impacting physiology in unexpected ways.


Asunto(s)
Núcleo Celular/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Mutación , Neuronas/metabolismo , Proteínas RGS/genética , Animales , Hipocampo/citología , Hipocampo/fisiología , Humanos , Carioferinas/metabolismo , Ratones , Plasticidad Neuronal , Transporte de Proteínas , Proteínas RGS/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Aprendizaje Espacial , Proteína Exportina 1
11.
Mol Psychiatry ; 26(1): 350-364, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31745235

RESUMEN

Mineralocorticoid receptors (MRs) in the brain play a role in learning and memory, neuronal differentiation, and regulation of the stress response. Within the hippocampus, the highest expression of MRs is in area CA2. CA2 pyramidal neurons have a distinct molecular makeup resulting in a plasticity-resistant phenotype, distinguishing them from neurons in CA1 and CA3. Thus, we asked whether MRs regulate CA2 neuron properties and CA2-related behaviors. Using three conditional knockout methods at different stages of development, we found a striking decrease in multiple molecular markers for CA2, an effect mimicked by chronic antagonism of MRs. Furthermore, embryonic deletion of MRs disrupted afferent inputs to CA2 and enabled synaptic potentiation of the normally LTP-resistant synaptic currents in CA2. We also found that CA2-targeted MR knockout was sufficient to disrupt social behavior and alter behavioral responses to novelty. Altogether, these results demonstrate an unappreciated role for MRs in controlling CA2 pyramidal cell identity and in facilitating CA2-dependent behaviors.


Asunto(s)
Células Piramidales/citología , Células Piramidales/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animales , Región CA2 Hipocampal/citología , Región CA2 Hipocampal/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal , Fenotipo , Receptores de Mineralocorticoides/deficiencia , Receptores de Mineralocorticoides/genética
12.
Eur J Neurosci ; 53(12): 4005-4015, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33220084

RESUMEN

Current methods of experimentally degrading the specialized extracellular matrix (ECM), perineuronal nets (PNNs) have several limitations. Genetic knockout of ECM components typically has only partial effects on PNNs, and knockout of the major ECM component aggrecan is lethal in mice. Direct injection of the chondroitinase ABC (ChABC) enzyme into the mammalian brain is effective at degrading PNNs in vivo but this method typically lacks consistent, localized spatial targeting of PNN degradation. PNNs also regenerate within weeks after a ChABC injection, thus limiting the ability to perform long-term studies. Previous work has demonstrated that viral delivery of ChABC in mammalian neurons can successfully degrade PNNs for much longer periods, but the effects are similarly diffuse beyond the injection site. In an effort to gain cell-specific targeting of ChABC, we designed an adeno-associated virus encoding ChABC under the control of the Cre-LoxP system. We show that this virus is effective at targeting the synthesis of ChABC to Cre-expressing mouse neurons in vivo. Although ChABC expression is localized to the Cre-expressing neurons, we also note that ChABC is apparently trafficked and secreted at projection sites, as was previously reported for the non-Cre dependent construct. Overall, this method allows for cell-specific targeting of ChABC and long-term degradation of PNNs, which will ultimately serve as an effective tool to study the function of cell-autonomous regulation of PNNs in vivo. This novel approach may also aid in determining whether specific, long-term PNN loss is an appropriate strategy for treatment of neurodevelopmental disorders associated with PNN pathology.


Asunto(s)
Condroitina ABC Liasa , Dependovirus , Animales , Dependovirus/genética , Matriz Extracelular , Integrasas , Ratones , Neuronas
13.
Artículo en Inglés | MEDLINE | ID: mdl-32612520

RESUMEN

Immunolabeling for adenosine A1 receptors (A1Rs) is high in hippocampal area CA2 in adult rats, and the potentiating effects of caffeine or other A1R-selective antagonists on synaptic responses are particularly robust at Schaffer collateral synapses in CA2. Interestingly, the pronounced staining for A1Rs in CA2 is not apparent until rats are 4 weeks old, suggesting that developmental changes other than receptor distribution underlie the sensitivity of CA2 synapses to A1R antagonists in young animals. To evaluate the role of A1R-mediated postsynaptic signals at these synapses, we tested whether A1R agonists regulate synaptic transmission at Schaffer collateral inputs to CA2 and CA1. We found that the selective A1R agonist CCPA caused a lasting depression of synaptic responses in both CA2 and CA1 neurons in slices obtained from juvenile rats (P14), but that the effect was observed only in CA2 in slices prepared from adult animals (~P70). Interestingly, blocking phosphodiesterase activity with rolipram inhibited the CCPA-induced depression in CA1, but not in CA2, indicative of robust phosphodiesterase activity in CA1 neurons. Likewise, synaptic responses in CA2 and CA1 differed in their sensitivity to the adenylyl cyclase activator, forskolin, in that it increased synaptic transmission in CA2, but had little effect in CA1. These findings suggest that the A1R-mediated synaptic depression tracks the postnatal development of immunolabeling for A1Rs and that the enhanced sensitivity to antagonists in CA2 at young ages is likely due to robust adenylyl cyclase activity and weak phosphodiesterase activity rather than to enrichment of A1Rs.

14.
Cell Rep ; 31(10): 107740, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32521265

RESUMEN

Muscarinic acetylcholine receptors (mAChRs) are critically involved in hippocampal theta generation, but much less is known about the role of nicotinic AChRs (nAChRs). Here we provide evidence that α7 nAChRs expressed on interneurons, particularly those in oriens lacunosum moleculare (OLM), also regulate hippocampal theta generation. Local hippocampal infusion of a selective α7 nAChR antagonist significantly reduces hippocampal theta power and impairs Y-maze spontaneous alternation performance in freely moving mice. By knocking out receptors in different neuronal subpopulations, we find that α7 nAChRs expressed in OLM interneurons regulate theta generation. Our in vitro slice studies indicate that α7 nAChR activation increases OLM neuron activity that, in turn, enhances pyramidal cell excitatory postsynaptic currents (EPSCs). Our study also suggests that mAChR activation promotes transient theta generation, while α7 nAChR activation facilitates future theta generation by similar stimulations, revealing a complex mechanism whereby cholinergic signaling modulates different aspects of hippocampal theta oscillations through different receptor subtypes.


Asunto(s)
Hipocampo/metabolismo , Interneuronas/metabolismo , Ritmo Teta , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
15.
eNeuro ; 7(2)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32198158

RESUMEN

A key goal in hippocampal research is to understand how neuronal activity is generated and organized across hippocampal subregions to enable memory formation and retrieval. Neuronal activity in CA2 is regulated by spatial and social investigation as well as by novelty (Mankin et al., 2015; Alexander et al., 2016), and CA2 activity controls population oscillatory activity in the slow γ and ripple ranges within hippocampus (Kay et al., 2016; Oliva et al., 2016; Boehringer et al., 2017; Alexander et al., 2018). CA2 neurons are also required for social recognition memory (Stevenson and Caldwell, 2012; Hitti and Siegelbaum, 2014; Smith et al., 2016). Because CA1 exhibits layer-specific organization (Scheffer-Teixeira et al., 2012; Lasztóczi and Klausberger, 2014, 2016) reflective of its inputs (Fernández-Ruiz et al., 2012; Schomburg et al., 2014), and because CA2 activity controls CA1 slow γ (Alexander et al., 2018), we hypothesized that silencing CA2 would affect CA1 slow γ in a layer-specific manner during investigation of a novel social stimulus. While recording from CA1, we leveraged molecular tools to selectively target and inhibit CA2 pyramidal cells using inhibitory DREADDs while subject mice investigated novel animals or objects. We found that CA2 inhibition reduced slow γ power during investigation of a novel animal and fast γ power during both novel object and animal investigation in a manner reflective of the CA2 axonal projection zones within CA1. Our results suggest that CA2 contributes to CA1 slow and fast γ oscillations in a stimulus-specific manner.


Asunto(s)
Hipocampo , Células Piramidales , Potenciales de Acción , Animales , Región CA1 Hipocampal , Memoria , Ratones , Neuronas
16.
Cell Rep ; 29(2): 522-539.e6, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597108

RESUMEN

RNA localization is one mechanism neurons use to spatially and temporally regulate gene expression at synapses. Here, we test the hypothesis that cells exhibiting distinct forms of synaptic plasticity will have differences in dendritically localized RNAs. Indeed, we discover that each major subregion of the adult mouse hippocampus expresses a unique complement of dendritic RNAs. Specifically, we describe more than 1,000 differentially expressed dendritic RNAs, suggesting that RNA localization and local translation are regulated in a cell type-specific manner. Furthermore, by focusing Gene Ontology analyses on the plasticity-resistant CA2, we identify an enrichment of mitochondria-associated pathways in CA2 cell bodies and dendrites, and we provide functional evidence that these pathways differentially influence plasticity and mitochondrial respiration in CA2. These data indicate that differences in dendritic transcriptomes may regulate cell type-specific properties important for learning and memory and may influence region-specific differences in disease pathology.


Asunto(s)
Región CA2 Hipocampal/metabolismo , Dendritas/metabolismo , Mitocondrias/metabolismo , Transcriptoma/genética , Regiones no Traducidas 3'/genética , Animales , Calcio/metabolismo , Respiración de la Célula , ADN Mitocondrial/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Biosíntesis de Proteínas , ARN/metabolismo , Empalme del ARN/genética , Superóxidos/metabolismo , Transmisión Sináptica
17.
Neurobiol Learn Mem ; 163: 107044, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31319167

RESUMEN

Activity of hippocampal pyramidal cells is critical for certain forms of learning and memory, and work from our lab and others has shown that CA2 neuronal activity is required for social cognition and behavior. Silencing of CA2 neurons in mice impairs social memory, and mice lacking Regulator of G-Protein Signaling 14 (RGS14), a protein that is highly enriched in CA2 neurons, learn faster than wild types in the Morris water maze spatial memory test. Although the enhanced spatial learning abilities of the RGS14 KO mice suggest a role for CA2 neurons in at least one hippocampus-dependent behavior, the role of CA2 neurons in fear conditioning, which requires activity of hippocampus, amygdala, and possibly prefrontal cortex is unknown. In this study, we expressed excitatory or inhibitory DREADDs in CA2 neurons and administered CNO before the shock-tone-context pairing. On subsequent days, we measured freezing behavior in the same context but without the tone (contextual fear) or in a new context but in the presence of the tone (cued fear). We found that increasing CA2 neuronal activity with excitatory DREADDs during training resulted in increased freezing during the cued fear tests in males and females. Surprisingly, we found that only females showed increased freezing during the contextual fear memory tests. Using inhibitory DREADDs, we found that inhibiting CA2 neuronal activity during the training phase also resulted in increased freezing in females during the subsequent contextual fear memory test. Finally, we tested fear conditioning in RGS14 KO mice and found that female KO mice had increased freezing on the cued fear memory test. These three separate lines of evidence suggest that CA2 neurons are actively involved in both intra- and extra-hippocampal brain processes and function to influence fear memory. Finally, the intriguing and consistent findings of enhanced fear conditioning only among females is strongly suggestive of a sexual dimorphism in CA2-linked circuits.


Asunto(s)
Región CA2 Hipocampal/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Animales , Señales (Psicología) , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas RGS/fisiología , Retención en Psicología/fisiología , Factores Sexuales
18.
J Proteome Res ; 18(6): 2571-2584, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31059263

RESUMEN

The hippocampus is well established as an essential brain center for learning and memory. Within the hippocampus, recent studies show that area CA2 is important for social memory and is an anomaly compared to its better-understood neighboring region, CA1. Unlike CA1, CA2 displays a lack of typical synaptic plasticity, enhanced calcium buffering and extrusion, and resilience to cell death following injury. Although recent studies have identified multiple molecular markers of area CA2, the proteins that mediate the unique physiology, signaling, and resilience of this region are unknown. Using a transgenic GFP-reporter mouse line that expresses eGFP in CA2, we were able to perform targeted dissections of area CA2 and CA1 for proteomic analysis. We identified over 100 proteins with robustly enriched expression in area CA2 compared to CA1. Many of these proteins, including RGS14 and NECAB2, have already been shown to be enriched in CA2 and important for its function, while many more merit further study in the context of enhanced expression in this enigmatic brain region. Furthermore, we performed a comprehensive analysis of the entire data set (>2300 proteins) using a weighted protein co-expression network analysis. This identified eight distinct co-expressed patterns of protein co-enrichment associated with increased expression in area CA2 tissue (compared to CA1). The novel data set we present here reveals a specific CA2 hippocampal proteome, laying the groundwork for future studies and a deeper understanding of area CA2 and the proteins mediating its unique physiology and signaling.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA2 Hipocampal/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas del Ojo/genética , Proteoma/genética , Proteínas RGS/genética , Animales , Calcio/metabolismo , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Humanos , Ratones , Plasticidad Neuronal/genética , Mapas de Interacción de Proteínas/genética , Proteoma/metabolismo , Transducción de Señal/genética
19.
Hippocampus ; 29(2): 78-92, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30067288

RESUMEN

Excitatory synaptic inputs from specific brain regions are often targeted to distinct dendritic arbors on hippocampal pyramidal neurons. Recent work has suggested that CA2 pyramidal neurons respond robustly and preferentially to excitatory input into the stratum lacunosum moleculare (SLM), with a relatively modest response to Schaffer collateral excitatory input into stratum radiatum (SR) in acute mouse hippocampal slices, but the extent to which this difference may be explained by morphology is unknown. In an effort to replicate these findings and to better understand the role of dendritic morphology in shaping responses from proximal and distal synaptic sites, we measured excitatory postsynaptic currents and action potentials in CA2 pyramidal cells in response to SR and SLM stimulation and subsequently analyzed confocal images of the filled cells. We found that, in contrast to previous reports, SR stimulation evoked substantial responses in all recorded CA2 pyramidal cells. Strikingly, however, we found that not all neurons responded to SLM stimulation, and in those neurons that did, responses evoked by SLM and SR were comparable in size and effectiveness in inducing action potentials. In a comprehensive morphometric analysis of CA2 pyramidal cell apical dendrites, we found that the neurons that were unresponsive to SLM stimulation were the same ones that lacked substantial apical dendritic arborization in the SLM. Neurons responsive to both SR and SLM stimulation had roughly equal amounts of dendritic branching in each layer. Remarkably, our study in mouse CA2 generally replicates the work characterizing the diversity of CA2 pyramidal cells in the guinea pig hippocampus. We conclude, then, that like in guinea pig, mouse CA2 pyramidal cells have a diverse apical dendrite morphology that is likely to be reflective of both the amount and source of excitatory input into CA2 from the entorhinal cortex and CA3.


Asunto(s)
Región CA2 Hipocampal/fisiología , Dendritas/fisiología , Corteza Entorrinal/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Región CA2 Hipocampal/citología , Corteza Entorrinal/citología , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos
20.
Curr Opin Neurobiol ; 54: 194-199, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30120016

RESUMEN

Synaptic plasticity in the hippocampus is thought to play a vital role in both the refinement of neuronal circuits during development and in learning in the mature brain. Synapses in hippocampal area CA1 are known for a robust capacity for long-term potentiation (LTP), whereas synapses in the stratum radiatum of hippocampal area CA2 are particularly resistant to such changes. Although we have yet to fully understand the mechanisms behind this resistance to plasticity, a number of genes and extracellular matrix components highly expressed in CA2 appear to function as molecular brakes on plasticity and develop postnatally in the rodent brain. Curiously, the developmental profile of several CA2-enriched molecules is suggestive of a still undefined critical window of plasticity in the hippocampus.


Asunto(s)
Región CA2 Hipocampal/citología , Región CA2 Hipocampal/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA