Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Genet Med ; 23(10): 1882-1888, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34040190

RESUMEN

PURPOSE: Somatic activating variants in the PI3K-AKT pathway cause vascular malformations with and without overgrowth. We previously reported an individual with capillary and lymphatic malformation harboring a pathogenic somatic variant in PIK3R1, which encodes three PI3K complex regulatory subunits. Here, we investigate PIK3R1 in a large cohort with vascular anomalies and identify an additional 16 individuals with somatic mosaic variants in PIK3R1. METHODS: Affected tissue from individuals with vascular lesions and overgrowth recruited from a multisite collaborative network was studied. Next-generation sequencing targeting coding regions of cell-signaling and cancer-associated genes was performed followed by assessment of variant pathogenicity. RESULTS: The phenotypic and variant spectrum associated with somatic variation in PIK3R1 is reported herein. Variants occurred in the inter-SH2 or N-terminal SH2 domains of all three PIK3R1 protein products. Phenotypic features overlapped those of the PIK3CA-related overgrowth spectrum (PROS). These overlapping features included mixed vascular malformations, sandal toe gap deformity with macrodactyly, lymphatic malformations, venous ectasias, and overgrowth of soft tissue or bone. CONCLUSION: Somatic PIK3R1 variants sharing attributes with cancer-associated variants cause complex vascular malformations and overgrowth. The PIK3R1-associated phenotypic spectrum overlaps with PROS. These data extend understanding of the diverse phenotypic spectrum attributable to genetic variation in the PI3K-AKT pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/genética , Deformidades Congénitas de las Extremidades , Malformaciones Vasculares , Humanos , Mutación , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal , Malformaciones Vasculares/genética
3.
BMC Bioinformatics ; 22(1): 181, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33832433

RESUMEN

BACKGROUND: The widespread use of next-generation sequencing has identified an important role for somatic mosaicism in many diseases. However, detecting low-level mosaic variants from next-generation sequencing data remains challenging. RESULTS: Here, we present a method for Position-Based Variant Identification (PBVI) that uses empirically-derived distributions of alternate nucleotides from a control dataset. We modeled this approach on 11 segmental overgrowth genes. We show that this method improves detection of single nucleotide mosaic variants of 0.01-0.05 variant allele fraction compared to other low-level variant callers. At depths of 600 × and 1200 ×, we observed > 85% and > 95% sensitivity, respectively. In a cohort of 26 individuals with somatic overgrowth disorders PBVI showed improved signal to noise, identifying pathogenic variants in 17 individuals. CONCLUSION: PBVI can facilitate identification of low-level mosaic variants thus increasing the utility of next-generation sequencing data for research and diagnostic purposes.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Nucleótidos , Alelos , Estudios de Cohortes , Humanos , Nucleótidos/genética , Programas Informáticos
4.
HGG Adv ; 1(1): 100009, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-35047831

RESUMEN

Individuals with orofacial asymmetry due to mucosal overgrowths, ipsilateral bone and dental aberrations with perineurial hyperplasia and/or perineuriomatous pseudo-onion bulb proliferations, comprise a recognizable clinical entity. In this article, we describe three individuals with this clinical entity and mosaic PIK3CA variants c.3140A>G (p. His1047Arg), c.328_330delGAA (p. Glu110del), and c.1353_1364del (p.Glu453_Leu456del). We conclude that the identification of these mosaic variants in individuals with orofacial asymmetry presenting histopathologically perineurial hyperplasia and/or intraneural pseudo-onion bulb perineurial cell proliferations supports the inclusion of this clinical entity in the PIK3CA-related overgrowth spectrum.

5.
J Med Genet ; 56(7): 444-452, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30842225

RESUMEN

BACKGROUND: A single variant in NAA10 (c.471+2T>A), the gene encoding N-acetyltransferase 10, has been associated with Lenz microphthalmia syndrome. In this study, we aimed to identify causative variants in families with syndromic X-linked microphthalmia. METHODS: Three families, including 15 affected individuals with syndromic X-linked microphthalmia, underwent analyses including linkage analysis, exome sequencing and targeted gene sequencing. The consequences of two identified variants in NAA10 were evaluated using quantitative PCR and RNAseq. RESULTS: Genetic linkage analysis in family 1 supported a candidate region on Xq27-q28, which included NAA10. Exome sequencing identified a hemizygous NAA10 polyadenylation signal (PAS) variant, chrX:153,195,397T>C, c.*43A>G, which segregated with the disease. Targeted sequencing of affected males from families 2 and 3 identified distinct NAA10 PAS variants, chrX:g.153,195,401T>C, c.*39A>G and chrX:g.153,195,400T>C, c.*40A>G. All three variants were absent from gnomAD. Quantitative PCR and RNAseq showed reduced NAA10 mRNA levels and abnormal 3' UTRs in affected individuals. Targeted sequencing of NAA10 in 376 additional affected individuals failed to identify variants in the PAS. CONCLUSION: These data show that PAS variants are the most common variant type in NAA10-associated syndromic microphthalmia, suggesting reduced RNA is the molecular mechanism by which these alterations cause microphthalmia/anophthalmia. We reviewed recognised variants in PAS associated with Mendelian disorders and identified only 23 others, indicating that NAA10 harbours more than 10% of all known PAS variants. We hypothesise that PAS in other genes harbour unrecognised pathogenic variants associated with Mendelian disorders. The systematic interrogation of PAS could improve genetic testing yields.


Asunto(s)
Regiones no Traducidas 3' , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Poli A , Alelos , Anoftalmos , Femenino , Genes Ligados a X , Genotipo , Humanos , Escala de Lod , Masculino , Microftalmía , Linaje , Análisis de Secuencia de ADN , Inactivación del Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA