Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34162739

RESUMEN

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as the infectious agent causing the pandemic coronavirus disease 2019 (COVID-19) with dramatic consequences for global human health and economics. Previously, we reached clinical evaluation with our vector vaccine based on modified vaccinia virus Ankara (MVA) against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an infection in humans similar to SARS and COVID-19. Here, we describe the construction and preclinical characterization of a recombinant MVA expressing full-length SARS-CoV-2 spike (S) protein (MVA-SARS-2-S). Genetic stability and growth characteristics of MVA-SARS-2-S, plus its robust expression of S protein as antigen, make it a suitable candidate vaccine for industrial-scale production. Vaccinated mice produced S-specific CD8+ T cells and serum antibodies binding to S protein that neutralized SARS-CoV-2. Prime-boost vaccination with MVA-SARS-2-S protected mice sensitized with a human ACE2-expressing adenovirus from SARS-CoV-2 infection. MVA-SARS-2-S is currently being investigated in a phase I clinical trial as aspirant for developing a safe and efficacious vaccine against COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Vacunas contra la COVID-19/normas , Relación Dosis-Respuesta Inmunológica , Humanos , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T , Vacunación , Virus Vaccinia
2.
Org Biomol Chem ; 19(10): 2302-2311, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33629091

RESUMEN

The cyanobacterium Fischerella ambigua is a natural producer of polychlorinated aromatic compounds, the ambigols A-E. The biosynthetic gene cluster (BGC) of these highly halogenated triphenyls has been recently identified by heterologous expression. It consists of 10 genes named ab1-10. Two of the encoded enzymes, i.e. Ab2 and Ab3, were identified by in vitro and in vivo assays as cytochrome P450 enzymes responsible for biaryl and biaryl ether formation. The key substrate for these P450 enzymes is 2,4-dichlorophenol, which in turn is derived from the precursor 3-chloro-4-hydroxybenzoic acid. Here, the biosynthetic steps leading towards 3-chloro-4-hydroxybenzoic acid were investigated by in vitro assays. Ab7, an isoenzyme of a 3-deoxy-7-phosphoheptulonate (DAHP) synthase, is involved in chorismate biosynthesis by the shikimate pathway. Chorismate in turn is further converted by a dedicated chorismate lyase (Ab5) yielding 4-hydroxybenzoic acid (4-HBA). The stand alone adenylation domain Ab6 is necessary to activate 4-HBA, which is subsequently tethered to the acyl carrier protein (ACP) Ab8. The Ab8 bound substrate is chlorinated by Ab10 in meta position yielding 3-Cl-4-HBA, which is then transfered by the condensation (C) domain to the peptidyl carrier protein and released by the thioesterase (TE) domain of Ab9. The released product is then expected to be the dedicated substrate of the halogenase Ab1 producing the monomeric ambigol building block 2,4-dichlorophenol.


Asunto(s)
Clorofenoles/metabolismo , Parabenos/metabolismo , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Ácido Corísmico/metabolismo , Cianobacterias/enzimología , Cianobacterias/metabolismo , Halogenación , Nucleotidiltransferasas/metabolismo , Oxidorreductasas/metabolismo , Oxo-Ácido-Liasas/metabolismo , Tioléster Hidrolasas/metabolismo
3.
Microb Cell Fact ; 18(1): 32, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30732610

RESUMEN

BACKGROUND: Serratia plymuthica WS3236 was selected for whole genome sequencing based on preliminary genetic and chemical screening indicating the presence of multiple natural product pathways. This led to the identification of a putative sodorifen biosynthetic gene cluster (BGC). The natural product sodorifen is a volatile organic compound (VOC) with an unusual polymethylated hydrocarbon bicyclic structure (C16H26) produced by selected strains of S. plymuthica. The BGC encoding sodorifen consists of four genes, two of which (sodA, sodB) are homologs of genes encoding enzymes of the non-mevalonate pathway and are thought to enhance the amounts of available farnesyl pyrophosphate (FPP), the precursor of sodorifen. Proceeding from FPP, only two enzymes are necessary to produce sodorifen: an S-adenosyl methionine dependent methyltransferase (SodC) with additional cyclisation activity and a terpene-cyclase (SodD). Previous analysis of S. plymuthica found sodorifen production titers are generally low and vary significantly among different producer strains. This precludes studies on the still elusive biological function of this structurally and biosynthetically fascinating bacterial terpene. RESULTS: Sequencing and mining of the S. plymuthica WS3236 genome revealed the presence of 38 BGCs according to antiSMASH analysis, including a putative sodorifen BGC. Further genome mining for sodorifen and sodorifen-like BGCs throughout bacteria was performed using SodC and SodD as queries and identified a total of 28 sod-like gene clusters. Using direct pathway cloning (DiPaC) we intercepted the 4.6 kb candidate sodorifen BGC from S. plymuthica WS3236 (sodA-D) and transformed it into Escherichia coli BL21. Heterologous expression under the control of the tetracycline inducible PtetO promoter firmly linked this BGC to sodorifen production. By utilizing this newly established expression system, we increased the production yields by approximately 26-fold when compared to the native producer. In addition, sodorifen was easily isolated in high purity by simple head-space sampling. CONCLUSIONS: Genome mining of all available genomes within the NCBI and JGI IMG databases led to the identification of a wealth of sod-like pathways which may be responsible for producing a range of structurally unknown sodorifen analogs. Introduction of the S. plymuthica WS3236 sodorifen BGC into the fast-growing heterologous expression host E. coli with a very low VOC background led to a significant increase in both sodorifen product yield and purity compared to the native producer. By providing a reliable, high-level production system, this study sets the stage for future investigations of the biological role and function of sodorifen and for functionally unlocking the bioinformatically identified putative sod-like pathways.


Asunto(s)
Compuestos Bicíclicos con Puentes/metabolismo , Escherichia coli/metabolismo , Familia de Multigenes , Octanos/metabolismo , Serratia/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Clonación Molecular , Biología Computacional , Escherichia coli/genética , Genoma Bacteriano , Pirofosfatasas/metabolismo
4.
Metab Eng ; 47: 334-345, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29548983

RESUMEN

Specialized metabolites from bacteria are an important source of inspiration for drug development. The genes required for the biosynthesis of such metabolites in bacteria are usually organized in so-called biosynthetic gene clusters (BGCs). Using modern bioinformatic tools, the wealth of genomic data can be scanned for such BGCs and the expected products can often structurally be predicted in silico. This facilitates the directed discovery of putatively novel bacterial metabolites. However, the production of these molecules often requires genetic manipulation of the BGC for activation or the expression of the pathway in a heterologous host. The latter necessitates the transplantation of the BGC into a suitable expression system. To achieve this goal, powerful cloning strategies based on in vivo homologous recombination have recently been developed. This includes LCHR and LLHR in E. coli as well as TAR cloning in yeast. Here, we present Direct Pathway Cloning (DiPaC) as an efficient complementary BGC capturing strategy that relies on long-amplicon PCR and in vitro DNA assembly. This straightforward approach facilitates full pathway assembly, BGC refactoring and direct transfer into any vector backbone in vitro. The broad applicability and efficiency of DiPaC is demonstrated by the discovery of a new phenazine from Serratia fonticola, the first heterologous production of anabaenopeptins from Nostoc punctiforme and the transfer of the native erythromycin BGC from Saccharopolyspora erythraea into Streptomyces. Due to its simplicity, we envisage DiPaC to become an essential method for BGC cloning and metabolic pathways construction with significant applications in metabolic engineering, synthetic biology and biotechnology.


Asunto(s)
Bacterias , Clonación Molecular/métodos , Ingeniería Metabólica/métodos , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo
5.
ACS Chem Biol ; 11(4): 1082-9, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26808594

RESUMEN

The epipolythiodioxopiperazine (ETP) gliotoxin mediates toxicity via its reactive thiol groups and thereby contributes to virulence of the human pathogenic fungus Aspergillus fumigatus. Self-intoxication of the mold is prevented either by reversible oxidation of reduced gliotoxin or by irreversible conversion to bis(methylthio)gliotoxin. The latter is produced by the S-methyltransferase TmtA and attenuates ETP biosynthesis. Here, we report the crystal structure of TmtA in complex with S-(5'-adenosyl)-l-homocysteine. TmtA features one substrate and one cofactor binding pocket per protein, and thus, bis-thiomethylation of gliotoxin occurs sequentially. Molecular docking of substrates and products into the active site of TmtA reveals that gliotoxin forms specific interactions with the protein surroundings, and free energy calculations indicate that methylation of the C10a-SH group precedes alkylation of the C3-SH site. Altogether, TmtA is well suited to selectively convert gliotoxin and to control its biosynthesis, suggesting that homologous enzymes serve to regulate the production of their toxic natural sulfur compounds in a similar manner.


Asunto(s)
Gliotoxina/antagonistas & inhibidores , Metiltransferasas/metabolismo , Humanos , Metiltransferasas/química , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...