Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1421432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136013

RESUMEN

Introduction: Advanced cutaneous melanoma is a skin cancer characterized by a poor prognosis and high metastatic potential. During metastatic spread, melanoma cells often undergo dedifferentiation toward an invasive phenotype, resulting in reduced expression of microphthalmia-associated transcription factor (MITF)-dependent melanoma antigens and facilitating immune escape. Tumor Necrosis Factor (TNF) is known to be a key factor in melanoma dedifferentiation. Interestingly, accumulating evidence suggests that TNF may play a role in melanoma progression and resistance to immunotherapies. Additionally, TNF has been identified as a potent regulator of sphingolipid metabolism, which could contribute to melanoma aggressiveness and the process of melanoma dedifferentiation. Methods: We conducted RNA sequencing and mass spectrometry analyses to investigate TNF-induced dedifferentiation in two melanoma cell lines. In vitro experiments were performed to manipulate sphingolipid metabolism using genetic or pharmacologic alterations in combination with TNF treatment, aiming to elucidate the potential involvement of this metabolism in TNF-induced dedifferentiation. Lastly, to evaluate the clinical significance of our findings, we performed unsupervised analysis of plasma sphingolipid levels in 48 patients receiving treatment with immune checkpoint inhibitors, either alone or in combination with anti-TNF therapy. Results: Herein, we demonstrate that TNF-induced melanoma cell dedifferentiation is associated with a global modulation of sphingolipid metabolism. Specifically, TNF decreases the expression and activity of acid ceramidase (AC), encoded by the ASAH1 gene, while increasing the expression of glucosylceramide synthase (GCS), encoded by the UGCG gene. Remarkably, knockdown of AC alone via RNA interference is enough to induce melanoma cell dedifferentiation. Furthermore, treatment with Eliglustat, a GCS inhibitor, inhibits TNF-induced melanoma cell dedifferentiation. Lastly, analysis of plasma samples from patients treated with immune checkpoint inhibitors, with or without anti-TNF therapy, revealed significant predictive sphingolipids. Notably, the top 8 predictive sphingolipids, including glycosphingolipids, were associated with a poor response to immunotherapy. Discussion: Our study highlights that ceramide metabolism alterations are causally involved in TNF-induced melanoma cell dedifferentiation and suggests that the evolution of specific ceramide metabolites in plasma may be considered as predictive biomarkers of resistance to immunotherapy.


Asunto(s)
Desdiferenciación Celular , Ceramidas , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Melanoma , Factor de Necrosis Tumoral alfa , Humanos , Melanoma/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Ceramidas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/inmunología , Masculino , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Esfingolípidos/metabolismo , Ceramidasa Ácida/metabolismo , Ceramidasa Ácida/genética , Femenino , Persona de Mediana Edad , Anciano
2.
J Lipid Res ; 65(3): 100520, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38369184

RESUMEN

Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 µM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 µM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 µM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.


Asunto(s)
Amidohidrolasas , Colorantes Fluorescentes , Etanolaminas/química , Lípidos
3.
Cancer Immunol Res ; 9(5): 568-582, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33727246

RESUMEN

Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by SMPD3, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8+ tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity. In vitro, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing SMPD3 expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8+ T-cell-dependent immune responses and overcome resistance to anti-PD-1.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Melanoma/inmunología , Melanoma/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Femenino , Humanos , Inmunidad , Inmunoterapia , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/genética , Células TH1/inmunología
4.
Clin Cancer Res ; 27(4): 1037-1047, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33272982

RESUMEN

PURPOSE: TNF blockers can be used to manage gastrointestinal inflammatory side effects following nivolumab and/or ipilimumab treatment in patients with advanced melanoma. Our preclinical data showed that anti-TNF could promote the efficacy of immune checkpoint inhibitors. PATIENTS AND METHODS: TICIMEL (NTC03293784) is an open-label, two-arm phase Ib clinical trial. Fourteen patients with advanced and/or metastatic melanoma (stage IIIc/IV) were enrolled. Patients were treated with nivolumab (1 mg/kg) and ipilimumab (3 mg/kg) combined to infliximab (5 mg/kg, N = 6) or certolizumab (400/200 mg, N = 8). The primary endpoint was safety and the secondary endpoint was antitumor activity. Adverse events (AEs) were graded according to the NCI Common Terminology Criteria for Adverse Events and response was assessed following RECIST 1.1. RESULTS: Only one dose-limiting toxicity was observed in the infliximab cohort. The two different combinations were found to be safe. We observed lower treatment-related AEs with infliximab as compared with certolizumab. In the certolizumab cohort, one patient was not evaluable for response. In this cohort, four of eight patients exhibited hepatobiliary disorders and seven of seven evaluable patients achieved objective response including four complete responses (CRs) and three partial responses (PRs). In the infliximab cohort, we observed one CR, two PRs, and three progressive diseases. Signs of activation and maturation of systemic T-cell responses were seen in patients from both cohorts. CONCLUSIONS: Our results show that both combinations are safe in human and provide clinical and biological activities. The high response rate in the certolizumab-treated patient cohort deserves further investigations.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Certolizumab Pegol/administración & dosificación , Certolizumab Pegol/efectos adversos , Femenino , Estudios de Seguimiento , Humanos , Infliximab/administración & dosificación , Infliximab/efectos adversos , Ipilimumab/administración & dosificación , Ipilimumab/efectos adversos , Masculino , Melanoma/diagnóstico , Melanoma/mortalidad , Melanoma/secundario , Persona de Mediana Edad , Nivolumab/administración & dosificación , Nivolumab/efectos adversos , Supervivencia sin Progresión , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
5.
Cancers (Basel) ; 12(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121001

RESUMEN

Metabolic reprogramming contributes to the pathogenesis and heterogeneity of melanoma. It is driven both by oncogenic events and the constraints imposed by a nutrient- and oxygen-scarce microenvironment. Among the most prominent metabolic reprogramming features is an increased rate of lipid synthesis. Lipids serve as a source of energy and form the structural foundation of all membranes, but have also emerged as mediators that not only impact classical oncogenic signaling pathways, but also contribute to melanoma progression. Various alterations in fatty acid metabolism have been reported and can contribute to melanoma cell aggressiveness. Elevated expression of the key lipogenic fatty acid synthase is associated with tumor cell invasion and poor prognosis. Fatty acid uptake from the surrounding microenvironment, fatty acid ß-oxidation and storage also appear to play an essential role in tumor cell migration. The aim of this review is (i) to focus on the major alterations affecting lipid storage organelles and lipid metabolism. A particular attention has been paid to glycerophospholipids, sphingolipids, sterols and eicosanoids, (ii) to discuss how these metabolic dysregulations contribute to the phenotype plasticity of melanoma cells and/or melanoma aggressiveness, and (iii) to highlight therapeutic approaches targeting lipid metabolism that could be applicable for melanoma treatment.

6.
Cells ; 9(9)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32858889

RESUMEN

Cutaneous melanoma is a deadly skin cancer whose aggressiveness is directly linked to its metastatic potency. Despite remarkable breakthroughs in term of treatments with the emergence of targeted therapy and immunotherapy, the prognosis for metastatic patients remains uncertain mainly because of resistances. Better understanding the mechanisms responsible for melanoma progression is therefore essential to uncover new therapeutic targets. Interestingly, the sphingolipid metabolism is dysregulated in melanoma and is associated with melanoma progression and resistance to treatment. This review summarises the impact of the sphingolipid metabolism on melanoma from the initiation to metastatic dissemination with emphasis on melanoma plasticity, immune responses and resistance to treatments.


Asunto(s)
Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Esfingolípidos/metabolismo , Humanos , Melanoma Cutáneo Maligno
7.
J Immunother Cancer ; 7(1): 303, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727152

RESUMEN

Immune checkpoint blockers (ICB) have revolutionized cancer therapy. However, complete response is observed in a minority of patients and most patients develop immune-related adverse events (irAEs). These include colitis, which can be treated with anti-tumor necrosis factor (TNF) antibodies such as Infliximab. In a recent issue of the Journal for ImmunoTherapy of Cancer, Badran et al. reported that co-administering Infliximab together with ICB to five cancer patients prevents colitis recurrence, with four of them exhibiting overall disease stability. The basis for this treatment strategy stemmed from our pre-clinical demonstration that TNF contributes to resistance to anti-PD-1 therapy. In agreement with this concept, we have shown that TNF blockers improve the anti-tumor therapeutic activity of ICB in mice and based on these findings we are currently evaluating the combination in melanoma patients enrolled in the TICIMEL clinical trial. Herein, (i) we discuss the scientific rationale for combining anti-TNF and ICB in cancer patients, (ii) comment on the paper published by Badran et al. and (iii) provide the TICIMEL clinical trial design.


Asunto(s)
Melanoma , Factor de Necrosis Tumoral alfa , Animales , Terapia Combinada , Humanos , Inmunoterapia , Ratones , Recurrencia Local de Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...