RESUMEN
Aging is associated with low-grade inflammation that increases the risk of infection and disease, yet the underlying mechanisms remain unclear. Gut microbiota composition shifts with age, harboring microbes with varied immunogenic capacities. We hypothesized the gut microbiota acts as an active driver of low-grade inflammation during aging. Microbiome patterns in aged mice strongly associated with signs of bacterial-induced barrier disruption and immune infiltration, including marked increased levels of circulating lipopolysaccharide (LPS)-binding protein (LBP) and colonic calprotectin. Ex vivo immunogenicity assays revealed that both colonic contents and mucosa of aged mice harbored increased capacity to activate toll-like receptor 4 (TLR4) whereas TLR5 signaling was unchanged. We found patterns of elevated innate inflammatory signaling (colonic Il6, Tnf, and Tlr4) and endotoxemia (circulating LBP) in young germ-free mice after 4 weeks of colonization with intestinal contents from aged mice compared with young counterparts, thus providing a direct link between aging-induced shifts in microbiota immunogenicity and host inflammation. Additionally, we discovered that the gut microbiota of aged mice exhibited unique responses to a broad-spectrum antibiotic challenge (Abx), with sustained elevation in Escherichia (Proteobacteria) and altered TLR5 immunogenicity 7 days post-Abx cessation. Together, these data indicate that old age results in a gut microbiota that differentially acts on TLR signaling pathways of the innate immune system. We found that these age-associated microbiota immunogenic signatures are less resilient to challenge and strongly linked to host inflammatory status. Gut microbiota immunogenic signatures should be thus considered as critical factors in mediating chronic inflammatory diseases disproportionally impacting older populations.
Asunto(s)
Envejecimiento , Microbioma Gastrointestinal , Inflamación , Animales , Envejecimiento/inmunología , Microbioma Gastrointestinal/inmunología , Ratones , Inflamación/inmunología , Ratones Endogámicos C57BL , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/inmunología , MasculinoRESUMEN
Otitis media (OM) is one of the most globally pervasive pediatric conditions. Translocation of nasopharynx-resident opportunistic pathogens like nontypeable Haemophilus influenzae (NTHi) assimilates into polymicrobial middle ear biofilms, which promote OM pathogenesis and substantially diminish antibiotic efficacy. Oral or tympanostomy tube (TT)-delivered antibiotics remain the standard of care (SOC) despite consequences including secondary infection, dysbiosis, and antimicrobial resistance. Monoclonal antibodies (mAb) against two biofilm-associated structural proteins, NTHi-specific type IV pilus PilA (anti-rsPilA) and protective tip-region epitopes of NTHi integration host factor (anti-tip-chimer), were previously shown to disrupt biofilms and restore antibiotic sensitivity in vitro. However, the additional criterion for clinical relevance includes the absence of consequential microbiome alterations. Here, nine chinchilla cohorts (n = 3/cohort) without disease were established to evaluate whether TT delivery of mAbs disrupted nasopharyngeal or fecal microbiomes relative to SOC-OM antibiotics. Cohort treatments included a 7d regimen of oral amoxicillin-clavulanate (AC) or 2d regimen of TT-delivered mAb, AC, Trimethoprim-sulfamethoxazole (TS), ofloxacin, or saline. Fecal and nasopharyngeal lavage (NPL) samples were collected before and several days post treatment (DPT) for 16S sequencing. While antibiotic-treated cohorts displayed beta-diversity shifts (PERMANOVA, P < 0.05) and reductions in alpha diversity (q < 0.20) relative to baseline, mAb antibodies failed to affect diversity, indicating maintenance of a eubiotic state. Taxonomic and longitudinal analyses showed blooms in opportunistic pathogens (ANCOM) and greater magnitudes of compositional change (P < 0.05) following broad-spectrum antibiotic but not mAb treatments. Collectively, results showed broad-spectrum antibiotics induced significant fecal and nasopharyngeal microbiome disruption regardless of delivery route. Excitingly, biofilm-targeting antibodies had little effect on fecal and nasopharyngeal microbiomes.
Asunto(s)
Antibacterianos , Otitis Media , Animales , Niño , Humanos , Antibacterianos/uso terapéutico , Chinchilla , Nivel de Atención , Otitis Media/tratamiento farmacológico , Oído Medio/patología , Biopelículas , Nasofaringe/patologíaRESUMEN
Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal-related death in premature infants. Its etiology is multifactorial, with intestinal dysbiosis playing a major role. Probiotics are a logical preventative therapy for NEC, however their benefits have been inconsistent. We previously developed a novel probiotic delivery system in which planktonic (free-living) Limosilactobacillus reuteri (Lr) is incubated with biocompatible dextranomer microspheres (DM) loaded with maltose (Lr-DM-maltose) to induce biofilm formation. Here we have investigated the effects of Lr-DM-maltose in an enteral feed-only piglet model of NEC. We found a significant decrease in the incidence of Definitive NEC (D-NEC), death associated with D-NEC, and activated microglia in the brains of piglets treated with Lr-DM-maltose compared to non-treated piglets. Microbiome analyses using 16S rRNA sequencing of colonic contents revealed a significantly different microbial community composition between piglets treated with Lr-DM-maltose compared to non-treated piglets, with an increase in Lactobacillaceae and a decrease in Clostridiaceae in Lr-DM-maltose-treated piglets. Furthermore, there was a significant decrease in the incidence of D-NEC between piglets treated with Lr-DM-maltose compared to planktonic Lr. These findings validate our previous results in rodents, and support future clinical trials of Lr in its biofilm state for the prevention of NEC in premature neonates.
Asunto(s)
Enterocolitis Necrotizante , Enfermedades del Recién Nacido , Limosilactobacillus reuteri , Probióticos , Recién Nacido , Animales , Humanos , Porcinos , Enterocolitis Necrotizante/prevención & control , ARN Ribosómico 16S/genética , Maltosa , Intestinos , Recien Nacido Prematuro , Biopelículas , Encéfalo , Probióticos/farmacología , Probióticos/uso terapéuticoRESUMEN
A previously described heterophil degranulation assay was adapted for use with ileal mucosal tissue via quantification of ß-D-glucuronidase and assay end product 4-methylumbelliferone (4-MU). Three initial experiments evaluated the effect of in ovo inoculations of Citrobacter freundii (CF) or mixed lactic acid bacteria (LAB) on ileal granulocyte degranulation. Inoculations were administered on embryonic d18, body weights (BW) were recorded on day of hatch (DOH) and d10 to calculate body weight gain (BWG), and ileal mucosal scrapings were collected on DOH or d10 for the 4-MU assay. In all experiments, treatments were statistically analyzed relative to control groups. Treatments minimally affected BWG in all in ovo experiments (p > 0.05) relative to respective control groups. Similarly, ileal degranulation in in ovo treatments did not statistically differ (p > 0.05). Based on BWG, in ovo treatments may have induced low-level inflammation unable to elicit detectable changes via the 4-MU assay. Four subsequent experiments were conducted to evaluate effects of Eimeria maxima (EM) on ileal degranulation. Treatments included non-inoculated controls and low, medium, or high EM infection. Across all four experiments, final BW or BWG over the inoculation period were suppressed (p < 0.05) in EM groups relative to respective controls with the exception of EM-low (p = 0.094) and EM-medium (p = 0.096) in one trial. Ileal mucosal scrapings for the 4-MU assay were collected on day of peak lesions. Resulting values were reduced (p < 0.05) for EM treated birds in three experiments with the exception of EM-medium (p = 0.247). No differences were observed in one experiment (p = 0.351), which may have been attributed to a variation in strain of infecting Eimeria. Although refinement for low level inflammation is warranted, results indicate successful adaptation of the 4-MU assay for use with intestinal tissue during significant gastrointestinal inflammation.
Asunto(s)
Coccidiosis , Eimeria , Lactobacillales , Enfermedades de las Aves de Corral , Animales , Pollos , Coccidiosis/veterinaria , Íleon , Aumento de Peso , Peso Corporal , Enfermedades de las Aves de Corral/microbiologíaRESUMEN
Introduction: Necrotizing enterocolitis (NEC) is a complex inflammatory disorder of the human intestine that most often occurs in premature newborns. Animal models of NEC typically use mice or rats; however, pigs have emerged as a viable alternative given their similar size, intestinal development, and physiology compared to humans. While most piglet NEC models initially administer total parenteral nutrition prior to enteral feeds, here we describe an enteral-feed only piglet model of NEC that recapitulates the microbiome abnormalities present in neonates that develop NEC and introduce a novel multifactorial definitive NEC (D-NEC) scoring system to assess disease severity. Methods: Premature piglets were delivered via Caesarean section. Piglets in the colostrum-fed group received bovine colostrum feeds only throughout the experiment. Piglets in the formula-fed group received colostrum for the first 24â h of life, followed by Neocate Junior to induce intestinal injury. The presence of at least 3 of the following 4 criteria were required to diagnose D-NEC: (1) gross injury score ≥4 of 6; (2) histologic injury score ≥3 of 5; (3) a newly developed clinical sickness score ≥5 of 8 within the last 12â h of life; and (4) bacterial translocation to ≥2 internal organs. Quantitative reverse transcription polymerase chain reaction was performed to confirm intestinal inflammation in the small intestine and colon. 16S rRNA sequencing was performed to evaluate the intestinal microbiome. Results: Compared to the colostrum-fed group, the formula-fed group had lower survival, higher clinical sickness scores, and more severe gross and histologic intestinal injury. There was significantly increased bacterial translocation, D-NEC, and expression of IL-1α and IL-10 in the colon of formula-fed compared to colostrum-fed piglets. Intestinal microbiome analysis of piglets with D-NEC demonstrated lower microbial diversity and increased Gammaproteobacteria and Enterobacteriaceae. Conclusions: We have developed a clinical sickness score and a new multifactorial D-NEC scoring system to accurately evaluate an enteral feed-only piglet model of NEC. Piglets with D-NEC had microbiome changes consistent with those seen in preterm infants with NEC. This model can be used to test future novel therapies to treat and prevent this devastating disease.
RESUMEN
The present study used a PCR approach to characterize prevalence of coccidial species in fecal samples obtained from 40 individual Midwestern turkey flocks to characterize distribution of species in commercial flocks. Each sample was screened for 6 prominent Eimeria species using species-specific primers and was supplemented with a primary nested-PCR approach for amplification of mitochondrial cytochrome c oxidase subunit gene I where initial sample DNA concentrations were low. All samples were positive for at least one species of Eimeria, while most presented 2 (20/40) or 3 (14/40) species in total. Prevalence across farms was primarily dominated by E. meleagrimitis (97.50%), E. adenoeides (95%), and E. gallopavonis (40%). Of the samples positive for E. adenoeides and E. meleagrimitis, almost half (17/40) contained additional species. Data presented here offer insight into Eimeria species currently challenging the Midwestern US turkey industry and potential need to evaluate flocks for species prior to implementing vaccination programs.
Asunto(s)
Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Animales , Pollos/genética , Coccidiosis/epidemiología , Coccidiosis/veterinaria , Eimeria/genética , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de las Aves de Corral/epidemiología , Prevalencia , Pavos/genéticaRESUMEN
This study examined the effects a synbiotic feed additive (PoultryStar meUS) on performance and intestinal health parameters in turkey poults administered a mixed Eimeria inoculation. The synbiotic feed additive consisted of Lactobacillus reuteri, Enterococcus faecium, Bifidobacterium animalis, Pediococcus acidilactici and a fructo-oligosaccharide prebiotic. Dietary treatments began on day of hatch, and poults were placed on a normal starter, starter containing Clinacox, or starter containing PoultryStar until the conclusion of the experiment on day 42. In addition, on day of hatch, all poults, with exception of the negative control, were orally inoculated with Salmonella enterica Enteritidis. On day 16, poults in inoculated treatment groups received an oral dose of Eimeria adenoides and Eimeria meleagrimitis oocysts resulting in a 2 × 3 factorial arrangement of treatments. BW were measured at weekly intervals after challenge, and fecal samples were collected from all pens during day 21 to day 33 to monitor fecal shedding and calculate oocyst per gram of feces. Five day after Eimeria inoculation, inoculated PoultryStar-fed (I-PS) and inoculated Clinacox-fed (I-CL) poults, on average, weighed and gained significantly more weight (P < 0.05) than inoculated controls (I-CON) and were similar to uninoculated treatments. Between day 21 and day 28, I-PS and I-CL poults showed a 23% improvement (P < 0.001) in percent change in BW gained relative to I-CON, and overall weight gain as a percentage was similar to the uninoculated control. Overall incidence of macroscopic intestinal lesions on day 21 and day 28 was low, but I-PS and I-CL poults were generally less positive than I-CON, and no oocysts were detected in the feces of any group except I-CON which cycled as expected. From this study, it can be concluded that incorporating PoultryStar into the diet of poults reared to 6 wk ameliorates and prevents aspects of performance loss and negative impacts on gut health seen with mixed Eimeria inoculation.
Asunto(s)
Coccidiosis , Suplementos Dietéticos , Eimeria , Enfermedades de las Aves de Corral , Simbióticos , Pavos , Animales , Peso Corporal , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Heces/parasitología , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & controlRESUMEN
Probiotics have become increasingly popular in the poultry industry as a promising nutritional intervention to promote the modulation of intestinal microbial communities and their metabolic activities as a means of improving health and performance. This study aimed to determine the influence of different probiotic formulations on the taxonomic and metabolic profiling of cecal microbial communities, as well as to define associations between cecal microbiota and growth parameters in 21 and 42-day-old broilers. Probiotics investigated included a synbiotic (SYNBIO), a yeast-based probiotic (YEAST), and three single-strain formulations of spore-forming Bacillus amyloliquefaciens (SINGLE1), B. subtilis (SINGLE2) and B. licheniformis (SINGLE3). Dietary inclusion of SYNBIO, YEAST, SINGLE2, and SINGLE3 into the diets supported a significant stimulation of BW and BWG by 7 days of age. Besides, SYNBIO reduced the overall mortality rate by 42d (p<0.05). No significant variation was observed among different probiotic-based formulations for cecal microbiota composition. However, there was a treatment-specific effect on the metabolic profiles, with a particular beneficial metabolic adaptation by the microbiota when supplemented by SYNBIO and SINGLE2. Furthermore, the population of Lactobacillales was identified to be strongly associated with lower Enterobacteriales colonization, higher BW means, and lower mortality rate of growing broilers. Overall, the results emphasize that probiotic supplementation may enhance the microbial energy metabolism in the ceca of young broilers.
Asunto(s)
Ciego/efectos de los fármacos , Ciego/microbiología , Pollos , Microbiota/efectos de los fármacos , Probióticos/farmacología , Animales , MasculinoRESUMEN
Increased intestinal permeability can be observed during the physiologic stress response and has been linked to suppression of animal health and performance. Previously published data have shown the efficacy of fluorescein isothiocyanate dextran (FITC-d; 4.17 mg/kg) as a marker of enteric inflammation and mucosal barrier function in multiple species. Fluorescein is a smaller, less expensive alternative molecule possessing similar properties. The following two experiments compared FITC-d and fluorescein as potential indicators of intestinal permeability in pre- and postweaned lambs administered daily intramuscular injections of dexamethasone (Dex; 0.1 mg/kg) for 1 wk. Experiment 1 consisted of five preweaned lambs that were placed in one of two treatment groups: fluorescein with Dex (F+Dex) or fluorescein only (F). On day 7, blood was collected before and 1 h after oral administration of fluorescein (50 mg/kg). Experiment 2 included 12 weaned lambs and four treatment groups: F+Dex, F, FITC-d with Dex (Fd+Dex), and FITC-d only (Fd). On day 7, blood was collected before and 2 h after oral administration of FITC-d (4.17 mg/kg) or fluorescein (50 mg/kg). Plasma fluorescence was reported as the ratio between T1h/T0 or T2h/T0 for experiment 1 or 2, respectively. Experiment 1 showed a significant increase in T1h/T0 ratio of F+Dex relative to F lambs (P = 0.05) indicative of increased leaky gut; however, no differences (P = 0.22) were obtained in experiment 2. Results of these experiments suggest fluorescein may serve as a suitable marker of enteric permeability in preruminant lambs, but not in those with functional rumens.
Asunto(s)
Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Mucosa Intestinal/fisiología , Rumiación Digestiva/fisiología , Ovinos/fisiología , Animales , Intestino Delgado , Masculino , PermeabilidadRESUMEN
The potential of probiotics to manipulate the intestinal microbial ecosystem toward commensal bacteria growth offers great opportunity for enhancing health and performance in poultry. This study aimed to evaluate the efficacy of five probiotic-based formulations in modulating cecal microbiota in broilers at 21 and 42 days of age. Probiotics investigated included a synbiotic (SYNBIO), a yeast (YEAST), and three single-strain formulations of Bacillus amyloliquefaciens (SINGLE1), B. subtilis (SINGLE2) and B. licheniformis (SINGLE3). Alpha-diversity analyses showed that cecal microbiota of SINGLE1, SINGLE2, and YEAST had low diversity compared to the control diet with no feed additive (CON) at 21d. At the same age, weighted Unifrac distance measure showed significant differences between samples from SYNBIO and CON (P = 0.02). However, by analyzing principal coordinates analysis (PCoA) with unweighted Unifrac, there was no evidence of clustering between CON and probiotic treatments. By 42d, there were no differences in alpha or beta-diversity in the microbiota of probiotic treatments compared to CON. Similarly, taxonomic microbial profiling did not show major changes in cecal microbial taxa. In conclusion, not all probiotic-based formulations tested had a core benefit on the modulation of microbiota. However, based on the quantitative beta diversity results, SYNBIO greatly influenced the cecal microbial community structure attributable to transient variations in relative taxon abundance.
Asunto(s)
Ciego/microbiología , Pollos/microbiología , Alimentos Formulados , Microbioma Gastrointestinal , Probióticos , AnimalesRESUMEN
Dexamethasone (Dex), a synthetic glucocorticoid (GC), in feed has been shown to increase gut permeability via stress-mediated mechanisms, but the exact mode of action on gut barrier function is not fully understood. Stress has been reported to alter the profile and virulence of intestinal flora predisposing for opportunistic disease. This study aimed to evaluate the relationship between dietary Dex and recoverable intestinal microbial profile in broilers to better understand mode of action and refine future uses of the model. Three experiments were conducted that administered Dex-treated feed for one week in conjunction with the antibiotics BMD (bacitracin methylene disalicylate) or Baytril® (enrofloxacin) to evaluate if enteric microbial mechanisms were important in Dex-induced permeability. Serum fluorescein isothiocyanate-dextran (FITC-d) and bacterial translocation (BT) have been reported to increase after Dex treatment and were used to assess gut epithelial leakage. Shifts in bacterial profiles were also measured on selective agar. Combining Dex with BMD or Baytril resulted in increased (P < 0.05) serum FITC-d versus Dex-only. Additionally, Baytril did not reduce aerobic BT and bacterial profiles remained similar after Dex. These results suggest a minimal role of intestinal microbes in Dex-induced changes to intestinal barrier function.
RESUMEN
Given that recent advances in metagenomics have highlighted the importance of intestinal microbes for poultry health, there has been a corresponding search for early manipulation strategies of intestinal microbiota in order to advance immune system development and optimize functional properties of growth. In this study, we used the in ovo technique as an experimental model to address how early bacterial intestinal colonization could affect the development and establishment of the mature ileal microbiota. Inoculations containing one of the following: 0.2 mL of 0.9% sterile saline (S), approximately 102 cells of Citrobacter freundii (CF), Citrobacter species (C2) or lactic acid bacteria mixture (L) were administered via in ovo into the amnion. Results showed that Enterobacteriaceae abundance was negatively correlated with aging, although its high population at day of hatch affected the microbiota composition, delaying mature microbiota establishment. L treatment increased colonization of butyrate-producing bacteria by 3 and 10 days, and segmented filamentous bacteria in the lower ileum by 10 days. On the other hand, L-probiotic decreased the population of Enterococcaceae. In addition, L and C2 microbial communities were less diverse at 10 than 3 days of age in the upper ileum. Importantly, these findings provide a valuable resource for a potential study model for interactions between microbial colonization and associated immune responses. In conclusion, our analysis demonstrates that intestinal pioneer colonizers play a critical role in driving the course of microbial community composition and diversity over time, in which early life exposure to L-based probiotic supported selection alongside greater colonization of symbiotic populations in the ileum of young broilers.