Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(1): 113615, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38159280

RESUMEN

The integrated stress response (ISR) is critical for cell survival under stress. In response to diverse environmental cues, eIF2α becomes phosphorylated, engendering a dramatic change in mRNA translation. The activation of ISR plays a pivotal role in the early embryogenesis, but the eIF2-dependent translational landscape in pluripotent embryonic stem cells (ESCs) is largely unexplored. We employ a multi-omics approach consisting of ribosome profiling, proteomics, and metabolomics in wild-type (eIF2α+/+) and phosphorylation-deficient mutant eIF2α (eIF2αA/A) mouse ESCs (mESCs) to investigate phosphorylated (p)-eIF2α-dependent translational control of naive pluripotency. We show a transient increase in p-eIF2α in the naive epiblast layer of E4.5 embryos. Absence of eIF2α phosphorylation engenders an exit from naive pluripotency following 2i (two chemical inhibitors of MEK1/2 and GSK3α/ß) withdrawal. p-eIF2α controls translation of mRNAs encoding proteins that govern pluripotency, chromatin organization, and glutathione synthesis. Thus, p-eIF2α acts as a key regulator of the naive pluripotency gene regulatory network.


Asunto(s)
Células Madre Embrionarias de Ratones , Células Madre Pluripotentes , Animales , Ratones , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Fosforilación , Células Madre Pluripotentes/metabolismo , ARN Mensajero/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo
2.
Nat Commun ; 14(1): 6982, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914694

RESUMEN

Nonalcoholic steatohepatitis (NASH) is epidemiologically associated with obesity and diabetes and can lead to liver cirrhosis and hepatocellular carcinoma if left untreated. The intricate signaling pathways that orchestrate hepatocyte energy metabolism and cellular stress, intrahepatic cell crosstalk, as well as interplay between peripheral tissues remain elusive and are crucial for the development of anti-NASH therapies. Herein, we reveal E3 ligase FBXW7 as a key factor regulating hepatic catabolism, stress responses, systemic energy homeostasis, and NASH pathogenesis with attenuated FBXW7 expression as a feature of advanced NASH. Multiomics and pharmacological intervention showed that FBXW7 loss-of-function in hepatocytes disrupts a metabolic transcriptional axis conjointly controlled by the nutrient-sensing nuclear receptors ERRα and PPARα, resulting in suppression of fatty acid oxidation, elevated ER stress, apoptosis, immune infiltration, fibrogenesis, and ultimately NASH progression in male mice. These results provide the foundation for developing alternative strategies co-targeting ERRα and PPARα for the treatment of NASH.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Hepatocitos/metabolismo , Homeostasis , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Nutrientes , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
3.
Mol Metab ; 78: 101814, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37802398

RESUMEN

OBJECTIVE: Estrogen related receptor α (ERRα) occupies a central node in the transcriptional control of energy metabolism, including in skeletal muscle, but whether modulation of its activity can directly contribute to extend endurance to exercise remains to be investigated. The goal of this study was to characterize the benefit of mice engineered to express a physiologically relevant activated form of ERRα on skeletal muscle exercise metabolism and performance. METHODS: We recently shown that mutational inactivation of three regulated phosphosites in the amino terminal domain of the nuclear receptor ERRα impedes its degradation, leading to an accumulation of ERRα proteins and perturbation of metabolic homeostasis in ERRα3SA mutant mice. Herein, we used a multi-omics approach in combination with physical endurance tests to ascertain the consequences of expressing the constitutively active phospho-deficient ERRα3SA form on muscle exercise performance and energy metabolism. RESULTS: Genetic heightening of ERRα activity enhanced exercise capacity, fatigue-resistance, and endurance. This phenotype resulted from extensive reprogramming of ERRα global DNA occupancy and transcriptome in muscle leading to an increase in oxidative fibers, mitochondrial biogenesis, fatty acid oxidation, and lactate homeostasis. CONCLUSION: Our findings support the potential to enhance physical performance and exercise-induced health benefits by targeting molecular pathways regulating ERRα transcriptional activity.


Asunto(s)
Músculo Esquelético , Carrera , Ratones , Animales , Músculo Esquelético/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Regulación de la Expresión Génica , Receptor Relacionado con Estrógeno ERRalfa
4.
Mol Cancer Res ; 21(10): 1050-1063, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37409967

RESUMEN

Dysregulation of mTOR signaling plays a critical role in promoting prostate cancer growth. HOXB13, a homeodomain transcription factor, is known to influence the androgen response and prostate cancer development. Recently, HOXB13 was found to complex with mTOR on chromatin. However, the functional crosstalk between HOXB13 and mTOR remains elusive. We now report that mTOR directly interacts with and hierarchically phosphorylates HOXB13 at threonine 8 and 41 then serine 31 to promote its interaction with the E3 ligase SKP2 while enhancing its oncogenic properties. Expression of HOXB13 harboring phosphomimetic mutations at the mTOR-targeted sites stimulates prostate cancer cellular growth both in vitro and in murine xenografts. Transcriptional profiling studies revealed a phospho-HOXB13-dependent gene signature capable of robustly discriminating between normal prostate tissues, primary and metastatic prostate cancer samples. This work uncovers a previously unanticipated molecular cascade by which mTOR directly phosphorylates HOXB13 to dictate a specific gene program with oncogenic implications in prostate cancer. IMPLICATIONS: Control of HOXB13 transcriptional activity via its direct phosphorylation by the mTOR kinase is a potential therapeutic avenue for the management of advanced prostate cancer.


Asunto(s)
Proteínas de Homeodominio , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Fosforilación , Línea Celular Tumoral , Proliferación Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neoplasias de la Próstata/patología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
Commun Biol ; 5(1): 955, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097051

RESUMEN

Functional oncogenic links between ErbB2 and ERRα in HER2+ breast cancer patients support a therapeutic benefit of co-targeted therapies. However, ErbB2 and ERRα also play key roles in heart physiology, and this approach could pose a potential liability to cardiovascular health. Herein, using integrated phosphoproteomic, transcriptomic and metabolic profiling, we uncovered molecular mechanisms associated with the adverse remodeling of cardiac functions in mice with combined attenuation of ErbB2 and ERRα activity. Genetic disruption of both effectors results in profound effects on cardiomyocyte architecture, inflammatory response and metabolism, the latter leading to a decrease in fatty acyl-carnitine species further increasing the reliance on glucose as a metabolic fuel, a hallmark of failing hearts. Furthermore, integrated omics signatures of ERRα loss-of-function and doxorubicin treatment exhibit common features of chemotherapeutic cardiotoxicity. These findings thus reveal potential cardiovascular risks in discrete combination therapies in the treatment of breast and other cancers.


Asunto(s)
Receptores de Estrógenos , Remodelación Ventricular , Animales , Doxorrubicina/farmacología , Ratones , Miocitos Cardíacos/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
6.
Proc Natl Acad Sci U S A ; 119(35): e2121251119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994670

RESUMEN

GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.


Asunto(s)
Aminoácidos , Eritrocitos , Hierro , Hígado , Macrófagos , Proteínas Serina-Treonina Quinasas , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/deficiencia , Aminoácidos/metabolismo , Anemia/metabolismo , Animales , Citofagocitosis , Eritrocitos/metabolismo , Eliminación de Gen , Hemólisis , Hipoxia/metabolismo , Hierro/metabolismo , Hígado/citología , Lisosomas/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico
7.
J Biol Chem ; 298(9): 102277, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863436

RESUMEN

La-related protein 1 (LARP1) has been identified as a key translational inhibitor of terminal oligopyrimidine (TOP) mRNAs downstream of the nutrient sensing protein kinase complex, mTORC1. LARP1 exerts this inhibitory effect on TOP mRNA translation by binding to the mRNA cap and the adjacent 5'TOP motif, resulting in the displacement of the cap-binding protein eIF4E from TOP mRNAs. However, the involvement of additional signaling pathway in regulating LARP1-mediated inhibition of TOP mRNA translation is largely unexplored. In the present study, we identify a second nutrient sensing kinase GCN2 that converges on LARP1 to control TOP mRNA translation. Using chromatin-immunoprecipitation followed by massive parallel sequencing (ChIP-seq) analysis of activating transcription factor 4 (ATF4), an effector of GCN2 in nutrient stress conditions, in WT and GCN2 KO mouse embryonic fibroblasts, we determined that LARP1 is a GCN2-dependent transcriptional target of ATF4. Moreover, we identified GCN1, a GCN2 activator, participates in a complex with LARP1 on stalled ribosomes, suggesting a role for GCN1 in LARP1-mediated translation inhibition in response to ribosome stalling. Therefore, our data suggest that the GCN2 pathway controls LARP1 activity via two mechanisms: ATF4-dependent transcriptional induction of LARP1 mRNA and GCN1-mediated recruitment of LARP1 to stalled ribosomes.


Asunto(s)
Aminoácidos , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN , ARN Mensajero , Proteínas de Unión al ARN , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/metabolismo , Animales , Técnicas de Cultivo de Célula , Inmunoprecipitación de Cromatina , Factor 4E Eucariótico de Iniciación/metabolismo , Fibroblastos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
8.
STAR Protoc ; 3(2): 101434, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35693211

RESUMEN

Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) is a technique to study protein complexes on chromatin. The protocol below describes specific steps for RIME analysis of the male human-derived prostate cancer cell line LNCaP. This approach can also be applied to other prostate cancer cell lines such as 22Rv1, DU145, and PC3. For other cell types, we recommend optimizing the number of cell culture plates to ensure adequate sample for mass spectrometry protein detection. For complete details on the use and execution of this protocol, please refer to Mohammed et al. (2016) and Dufour et al. (2022).


Asunto(s)
Cromatina , Neoplasias de la Próstata , Humanos , Inmunoprecipitación , Masculino , Espectrometría de Masas/métodos , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo
9.
Nat Commun ; 13(1): 2105, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440636

RESUMEN

Insulin resistance, a harbinger of the metabolic syndrome, is a state of compromised hormonal response resulting from the dysregulation of a wide range of insulin-controlled cellular processes. However, how insulin affects cellular energy metabolism via long-term transcriptional regulation and whether boosting mitochondrial function alleviates insulin resistance remains to be elucidated. Herein we reveal that insulin directly enhances the activity of the nuclear receptor ERRα via a GSK3ß/FBXW7 signaling axis. Liver-specific deletion of GSK3ß or FBXW7 and mice harboring mutations of ERRα phosphosites (ERRα3SA) co-targeted by GSK3ß/FBXW7 result in accumulated ERRα proteins that no longer respond to fluctuating insulin levels. ERRα3SA mice display reprogrammed liver and muscle transcriptomes, resulting in compromised energy homeostasis and reduced insulin sensitivity despite improved mitochondrial function. This crossroad of insulin signaling and transcriptional control by a nuclear receptor offers a framework to better understand the complex cellular processes contributing to the development of insulin resistance.


Asunto(s)
Resistencia a la Insulina , Animales , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Ratones , Receptores de Estrógenos/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
10.
Cell Rep ; 38(12): 110534, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35320709

RESUMEN

A growing number of studies support a direct role for nuclear mTOR in gene regulation and chromatin structure. Still, the scarcity of known chromatin-bound mTOR partners limits our understanding of how nuclear mTOR controls transcription. Herein, comprehensive mapping of the mTOR chromatin-bound interactome in both androgen-dependent and -independent cellular models of prostate cancer (PCa) identifies a conserved 67-protein interaction network enriched for chromatin modifiers, transcription factors, and SUMOylation machinery. SUMO2/3 and nuclear pore protein NUP210 are among the strongest interactors, while the androgen receptor (AR) is the dominant androgen-inducible mTOR partner. Further investigation reveals that NUP210 facilitates mTOR nuclear trafficking, that mTOR and AR form a functional transcriptional module with the nucleosome remodeling and deacetylase (NuRD) complex, and that androgens specify mTOR-SUMO2/3 promoter-enhancer association. This work identifies a vast network of mTOR-associated nuclear complexes advocating innovative molecular strategies to modulate mTOR-dependent gene regulation with conceivable implications for PCa and other diseases.


Asunto(s)
Cromatina , Neoplasias de la Próstata , Andrógenos/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Sci Rep ; 11(1): 21268, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711912

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), which is characterized by triglyceride accumulation, inflammation, and fibrosis. No pharmacological agents are currently approved to treat these conditions, but it is clear now that modulation of lipid synthesis and autophagy are key biological mechanisms that could help reduce or prevent these liver diseases. The folliculin (FLCN) protein has been recently identified as a central regulatory node governing whole body energy homeostasis, and we hypothesized that FLCN regulates highly metabolic tissues like the liver. We thus generated a liver specific Flcn knockout mouse model to study its role in liver disease progression. Using the methionine- and choline-deficient diet to mimic liver fibrosis, we demonstrate that loss of Flcn reduced triglyceride accumulation, fibrosis, and inflammation in mice. In this aggressive liver disease setting, loss of Flcn led to activation of transcription factors TFEB and TFE3 to promote autophagy, promoting the degradation of intracellular lipid stores, ultimately resulting in reduced hepatocellular damage and inflammation. Hence, the activity of FLCN could be a promising target for small molecule drugs to treat liver fibrosis by specifically activating autophagy. Collectively, these results show an unexpected role for Flcn in fatty liver disease progression and highlight new potential treatment strategies.


Asunto(s)
Autofagia/genética , Hepatitis/etiología , Hepatitis/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Transducción de Señal , Proteínas Supresoras de Tumor/deficiencia , Animales , Biomarcadores , Biopsia , Biología Computacional , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Hepatitis/patología , Inmunohistoquímica , Cirrosis Hepática/patología , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transcriptoma
12.
Oncogene ; 39(41): 6406-6420, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32855526

RESUMEN

DNA methylation is implicated in the acquisition of malignant phenotypes, and the use of epigenetic modulating drugs is a promising anti-cancer therapeutic strategy. 5-aza-2'deoxycytidine (decitabine, 5-azadC) is an FDA-approved DNA methyltransferase (DNMT) inhibitor with proven effectiveness against hematological malignancies and more recently triple-negative breast cancer (BC). Herein, genetic or pharmacological studies uncovered a hitherto unknown feedforward molecular link between DNMT1 and the estrogen related receptor α (ERRα), a key transcriptional regulator of cellular metabolism. Mechanistically, DNMT1 promotes ERRα stability which in turn couples DNMT1 transcription with that of the methionine cycle and S-adenosylmethionine synthesis to drive DNA methylation. In vitro and in vivo investigation using a pre-clinical mouse model of BC demonstrated a clear therapeutic advantage for combined administration of the ERRα inhibitor C29 with 5-azadC. A large-scale bisulfite genomic sequencing analysis revealed specific methylation perturbations fostering the discovery that reversal of promoter hypermethylation and consequently derepression of the tumor suppressor gene, IRF4, is a factor underlying the observed BC suppressive effects. This work thus uncovers a critical role of ERRα in the crosstalk between transcriptional control of metabolism and epigenetics and illustrates the potential for targeting ERRα in combination with DNMT inhibitors for BC treatment and other epigenetics-driven malignancies.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Factores Reguladores del Interferón/genética , Receptores de Estrógenos/metabolismo , Animales , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/efectos de los fármacos , Decitabina/farmacología , Decitabina/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Regiones Promotoras Genéticas/genética , Estabilidad Proteica , Receptores de Estrógenos/antagonistas & inhibidores , S-Adenosilmetionina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Receptor Relacionado con Estrógeno ERRalfa
13.
Genes Dev ; 34(7-8): 544-559, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32079653

RESUMEN

Excessive reactive oxygen species (ROS) can cause oxidative stress and consequently cell injury contributing to a wide range of diseases. Addressing the critical gaps in our understanding of the adaptive molecular events downstream ROS provocation holds promise for the identification of druggable metabolic vulnerabilities. Here, we unveil a direct molecular link between the activity of two estrogen-related receptor (ERR) isoforms and the control of glutamine utilization and glutathione antioxidant production. ERRα down-regulation restricts glutamine entry into the TCA cycle, while ERRγ up-regulation promotes glutamine-driven glutathione production. Notably, we identify increased ERRγ expression/activation as a hallmark of oxidative stress triggered by mitochondrial disruption or chemotherapy. Enhanced tumor antioxidant capacity is an underlying feature of human breast cancer (BCa) patients that respond poorly to treatment. We demonstrate that pharmacological inhibition of ERRγ with the selective inverse agonist GSK5182 increases antitumor efficacy of the chemotherapeutic paclitaxel on poor outcome BCa tumor organoids. Our findings thus underscore the ERRs as novel redox sensors and effectors of a ROS defense program and highlight the potential therapeutic advantage of exploiting ERRγ inhibitors for the treatment of BCa and other diseases where oxidative stress plays a central role.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Resistencia a Antineoplásicos/efectos de los fármacos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo , Transducción de Señal/fisiología , Animales , Antineoplásicos/farmacología , Técnicas Biosensibles , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutamina/metabolismo , Glutatión/metabolismo , Humanos , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Paclitaxel/farmacología , Receptores de Estrógenos/genética , Rotenona/farmacología , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Receptor Relacionado con Estrógeno ERRalfa
14.
Nat Commun ; 10(1): 2901, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263101

RESUMEN

Dysregulation of histone modifications promotes carcinogenesis by altering transcription. Breast cancers frequently overexpress the histone methyltransferase EZH2, the catalytic subunit of Polycomb Repressor Complex 2 (PRC2). However, the role of EZH2 in this setting is unclear due to the context-dependent functions of PRC2 and the heterogeneity of breast cancer. Moreover, the mechanisms underlying PRC2 overexpression in cancer are obscure. Here, using multiple models of breast cancer driven by the oncogene ErbB2, we show that the tyrosine kinase c-Src links energy sufficiency with PRC2 overexpression via control of mRNA translation. By stimulating mitochondrial ATP production, c-Src suppresses energy stress, permitting sustained activation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which increases the translation of mRNAs encoding the PRC2 subunits Ezh2 and Suz12. We show that Ezh2 overexpression and activity are pivotal in ErbB2-mediated mammary tumourigenesis. These results reveal the hitherto unknown c-Src/mTORC1/PRC2 axis, which is essential for ErbB2-driven carcinogenesis.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Epigénesis Genética , Complejo Represivo Polycomb 2/genética , Receptor ErbB-2/metabolismo , Familia-src Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Animales , Neoplasias de la Mama/patología , Proteína Tirosina Quinasa CSK , Carcinogénesis , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Humanos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Biosíntesis de Proteínas , Receptor ErbB-2/genética , Familia-src Quinasas/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-31024446

RESUMEN

As transcriptional factors, nuclear receptors (NRs) function as major regulators of gene expression. In particular, dysregulation of NR activity has been shown to significantly alter metabolic homeostasis in various contexts leading to metabolic disorders and cancers. The orphan estrogen-related receptor (ERR) subfamily of NRs, comprised of ERRα, ERRß, and ERRγ, for which a natural ligand has yet to be identified, are known as central regulators of energy metabolism. If AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) can be viewed as sensors of the metabolic needs of a cell and responding acutely via post-translational control of proteins, then the ERRs can be regarded as downstream effectors of metabolism via transcriptional regulation of genes for a long-term and sustained adaptive response. In this review, we will focus on recent findings centered on the transcriptional roles played by ERRα in hepatocytes. Modulation of ERRα activity in both in vitro and in vivo models via genetic or pharmacological manipulation coupled with chromatin-immunoprecipitation (ChIP)-on-chip and ChIP-sequencing (ChIP-seq) studies have been fundamental in delineating the direct roles of ERRα in the control of hepatic gene expression. These studies have identified crucial roles for ERRα in lipid and carbohydrate metabolism as well as in mitochondrial function under both physiological and pathological conditions. The regulation of ERRα expression and activity via ligand-independent modes of action including coregulator binding, post-translational modifications (PTMs) and control of protein stability will be discussed in the context that may serve as valuable tools to modulate ERRα function as new therapeutic avenues for the treatment of hepatic metabolic dysfunction and related diseases.

16.
Nat Commun ; 9(1): 2547, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29959321

RESUMEN

Emerging evidence has illustrated the importance of epigenomic reprogramming in cancer, with altered post-translational modifications of histones contributing to pathogenesis. However, the contributions of histone modifiers to breast cancer progression are unclear, and how these processes vary between molecular subtypes has yet to be adequately addressed. Here we report that genetic or pharmacological targeting of the epigenetic modifier Ezh2 dramatically hinders metastatic behaviour in both a mouse model of breast cancer and patient-derived xenografts reflective of the Luminal B subtype. We further define a subtype-specific molecular mechanism whereby EZH2 maintains H3K27me3-mediated repression of the FOXC1 gene, thereby inactivating a FOXC1-driven, anti-invasive transcriptional program. We demonstrate that higher FOXC1 is predictive of favourable outcome specifically in Luminal B breast cancer patients and establish the use of EZH2 methyltransferase inhibitors as a viable strategy to block metastasis in Luminal B breast cancer, where options for targeted therapy are limited.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proteína Potenciadora del Homólogo Zeste 2/genética , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Indoles/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Piridonas/farmacología , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Doxiciclina/farmacología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/deficiencia , Inhibidores Enzimáticos/farmacología , Femenino , Factores de Transcripción Forkhead/agonistas , Factores de Transcripción Forkhead/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/secundario , Ratones , Ratones Noqueados , Terapia Molecular Dirigida , Procesamiento Proteico-Postraduccional , Transducción de Señal , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Endocrinology ; 159(5): 2153-2164, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635284

RESUMEN

Given the increasing prevalence of obesity and the metabolic syndrome, identification of intrinsic molecular programs responsible for ensuring fuel homeostasis and preventing metabolic disease is needed. We investigated whether the orphan nuclear receptor estrogen-related receptor α (ERRα), a major regulator of energy metabolism, plays a role in lipid homeostasis and the development of nonalcoholic fatty liver disease (NAFLD) in response to chronic high-fat diet (HFD) consumption and long-term fasting. Systemic ablation of ERRα in mice demonstrated clear beneficial effects for loss of ERRα function in protection from HFD-provoked body weight gain manifested not only from a reduction in white adipose tissue stores but also from an impediment in intrahepatic lipid accumulation. The prevention of HFD-induced NAFLD in ERRα-null mice was underscored by transcriptional repression of de novo lipogenesis, which was upregulated in wild-type mice, a known contributing factor to lipid-stimulated hepatic steatosis. Surprisingly, given these findings, ERRα deficiency had no significant impact on the degree of fasting-induced NAFLD, involving the mobilization of adipocyte triglyceride (TG) stores into the liver. However, the presence of ERRα was essential for acute refeeding-mediated reversal of fasting-induced hepatic TG accretion, underpinned by impaired downregulation of adipose TG lipolysis and reduced hepatic mitochondrial oxidative activity. Taken together, the regulation of lipid handling by ERRα depended on the nutritional state, suggesting that negative modulation of ERRα activity could be envisaged to prevent lipid-induced NAFLD, whereas inducing its activity would be useful to treat and reverse the instilled disease.


Asunto(s)
Dieta Alta en Grasa , Ayuno/metabolismo , Lipogénesis/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , Receptores de Estrógenos/genética , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/genética , Metabolismo de los Lípidos/genética , Lipólisis/genética , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo , Aumento de Peso , Receptor Relacionado con Estrógeno ERRalfa
18.
Genes Dev ; 31(12): 1228-1242, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28724614

RESUMEN

Androgen receptor (AR) signaling reprograms cellular metabolism to support prostate cancer (PCa) growth and survival. Another key regulator of cellular metabolism is mTOR, a kinase found in diverse protein complexes and cellular localizations, including the nucleus. However, whether nuclear mTOR plays a role in PCa progression and participates in direct transcriptional cross-talk with the AR is unknown. Here, via the intersection of gene expression, genomic, and metabolic studies, we reveal the existence of a nuclear mTOR-AR transcriptional axis integral to the metabolic rewiring of PCa cells. Androgens reprogram mTOR-chromatin associations in an AR-dependent manner in which activation of mTOR-dependent metabolic gene networks is essential for androgen-induced aerobic glycolysis and mitochondrial respiration. In models of castration-resistant PCa cells, mTOR was capable of transcriptionally regulating metabolic gene programs in the absence of androgens, highlighting a potential novel castration resistance mechanism to sustain cell metabolism even without a functional AR. Remarkably, we demonstrate that increased mTOR nuclear localization is indicative of poor prognosis in patients, with the highest levels detected in castration-resistant PCa tumors and metastases. Identification of a functional mTOR targeted multigene signature robustly discriminates between normal prostate tissues, primary tumors, and hormone refractory metastatic samples but is also predictive of cancer recurrence. This study thus underscores a paradigm shift from AR to nuclear mTOR as being the master transcriptional regulator of metabolism in PCa.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/fisiopatología , Receptores Androgénicos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Andrógenos/metabolismo , Núcleo Celular/metabolismo , ADN/metabolismo , Progresión de la Enfermedad , Humanos , Masculino , Unión Proteica , Serina-Treonina Quinasas TOR/genética , Transcripción Genética
19.
Mol Endocrinol ; 28(12): 2060-71, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25361393

RESUMEN

Muscle fitness is an important determinant of health and disease. However, the molecular mechanisms involved in the coordinate regulation of the metabolic and structural determinants of muscle endurance are still poorly characterized. Herein, we demonstrate that estrogen-related receptor α (ERRα, NR3B1) is essential for skeletal muscle fitness. Notably, we show that ERRα-null animals are hypoactive and that genetic or therapeutic disruption of ERRα in mice results in reduced exercise tolerance. Mice lacking ERRα also exhibited lactatemia at exhaustion. Gene expression profiling demonstrates that ERRα plays a key role in various metabolic processes important for muscle function including energy substrate transport and use (Ldhd, Slc16a1, Hk2, and Glul), the tricarboxylic acid cycle (Cycs, and Idh3g), and oxidative metabolism (Pdha1, and Uqcrq). Metabolomics studies revealed impairment in replenishment of several amino acids (eg, glutamine) during recovery to exercise. Moreover, loss of ERRα was found to alter the expression of genes involved in oxidative stress response (Hmox1), maintenance of muscle fiber integrity (Trim63, and Hspa1b), and muscle plasticity and neovascularization (Vegfa). Taken together, our study shows that ERRα plays a key role in directing transcriptional programs required for optimal mitochondrial oxidative potential and muscle fitness, suggesting that modulation of ERRα activity could be used to manage metabolic myopathies and/or promote the adaptive response to physical exercise.


Asunto(s)
Tolerancia al Ejercicio/fisiología , Músculo Esquelético/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Tolerancia al Ejercicio/genética , Femenino , Masculino , Ratones Noqueados , Receptores de Estrógenos/genética , Receptor Relacionado con Estrógeno ERRalfa
20.
Mol Cell Biol ; 34(23): 4232-43, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25246633

RESUMEN

The tyrosine kinase receptor ERBB2 is required for normal development of the heart and is a potent oncogene in breast epithelium. Trastuzumab, a monoclonal antibody targeting ERBB2, improves the survival of breast cancer patients, but cardiac dysfunction is a major side effect of the drug. The molecular mechanisms underlying how ERBB2 regulates cardiac function and why trastuzumab is cardiotoxic remain poorly understood. We show here that ERBB2 hypomorphic mice develop cardiac dysfunction that mimics the side effects observed in patients treated with trastuzumab. We demonstrate that this phenotype is related to the critical role played by ERBB2 in cardiac homeostasis and physiological hypertrophy. Importantly, genetic and therapeutic reduction of ERBB2 activity in mice, as well as ablation of ERBB2 signaling by trastuzumab or siRNAs in human cardiomyocytes, led to the identification of an impaired E2F-1-dependent genetic program critical for the cardiac adaptive stress response. These findings demonstrate the existence of a previously unknown mechanistic link between ERBB2 and E2F-1 transcriptional activity in heart physiology and trastuzumab-induced cardiac dysfunction.


Asunto(s)
Adaptación Fisiológica , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos/efectos adversos , Cardiomegalia/genética , Factor de Transcripción E2F1/biosíntesis , Miocitos Cardíacos/efectos de los fármacos , Receptor ErbB-2/genética , Estrés Fisiológico , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Células Cultivadas , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Ecocardiografía , Fibrosis , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Corazón/crecimiento & desarrollo , Humanos , Ratones , Interferencia de ARN , ARN Interferente Pequeño , Receptor ErbB-2/inmunología , Transducción de Señal/genética , Volumen Sistólico/genética , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...