RESUMEN
Sunk cost sensitivity describes escalating decision commitment with increased spent resources. On neuroeconomic foraging tasks, mice, rats, and humans show similar escalations from sunk costs while quitting an ongoing countdown to reward. In a new analysis taken across computationally parallel foraging tasks across species and laboratories, we find that these behaviors primarily occur on choices that are economically inconsistent with the subject's other choices, and that they reflect not only the time spent, but also the time remaining, suggesting that these are change-of-mind re-evaluation processes. Using a recently proposed change-of-mind drift-diffusion model, we find that the sunk cost sensitivity in this model arises from decision-processes that directly take into account the time spent (costs sunk). Applying these new insights to experimental data, we find that sensitivity to sunk costs during re-evaluation decisions depends on the information provided to the subject about the time spent and the time remaining.
Asunto(s)
Toma de Decisiones , Animales , Humanos , Ratones , RatasRESUMEN
Many foraging experiments have found that subjects are suboptimal in foraging tasks, waiting out delays longer than they should given the reward structure of the environment. Additionally, theories of decision-making suggest that actions arise from interactions between multiple decision-making systems and that these systems should depend on the availability of information about the future. To explore suboptimal behavior on foraging tasks and how varying the amount of future information changed behavior, we ran rats on two matching neuroeconomic foraging tasks, Known Delay (KD) and Randomized Delay (RD), with the only difference between them being the certainty of the cost of future opportunities. Rats' decision-making strategies differed significantly based on the amount of future certainty. Rats on both tasks still showed suboptimality in decision-making through a sensitivity to sunk costs; however, rats on KD showed significantly less sensitivity to sunk costs than rats on RD. Additionally, on neither task did the rats account for travel and postreward lingering times as heavily as prereward foraging times providing evidence problematic for the Marginal Value Theorem model of foraging behavior. This suggests that while future certainty reduced decision-making errors, more complex decision-making processes unaffected by future certainty were involved and likely produced these decision-making errors within subjects on these foraging tasks. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Asunto(s)
Toma de Decisiones , Recompensa , Animales , Ratas , IncertidumbreRESUMEN
Current theories of deliberative decision making suggest that deliberative decisions arise from imagined simulations that require interactions between the prefrontal cortex and hippocampus. In rodent navigation experiments, hippocampal theta sequences advance from the location of the rat ahead to the subsequent goal. To examine the role of the medial prefrontal cortex (mPFC) on the hippocampus, we disrupted the mPFC with DREADDs (designer receptors exclusively activated by designer drugs). Using the Restaurant Row foraging task, we found that mPFC disruption resulted in decreased vicarious trial and error behavior, reduced the number of theta sequences, and impaired theta sequences in hippocampus. mPFC disruption led to larger changes in the initiation of the hippocampal theta sequences that represent the current location of the rat rather than to the later portions that represent the future outcomes. These data suggest that the mPFC likely provides an important component to the initiation of deliberative sequences and provides support for an episodic-future thinking, working memory interpretation of deliberation. NEW & NOTEWORTHY The medial prefrontal cortex (mPFC) and hippocampus interact during deliberative decision making. Disruption of the mPFC impaired hippocampal processes, including the local and nonlocal representations of space along each theta cycle and the initiation of hippocampal theta sequences, while sparing place cell firing characteristics and phase precession. mPFC disruption reduced the deliberative behavioral process vicarious trial and error and improved economic behaviors on this task.