Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065648

RESUMEN

Considering the escalating global prevalence and the huge therapeutic demand for the treatment of hypertension, there is a persistent need to identify novel target sites for vasodilator action. This study aimed to investigate the role of TRPA1 channels in carvacrol-induced vasodilation and to design novel compounds based on carvacrol structure with improved activities. In an isolated tissue bath experiment, it was shown that 1 µM of the selective TRPA1 antagonist A967079 significantly (p < 0.001) reduced vasodilation induced by 3 mM of carvacrol. A reliable 3D-QSAR model with good statistical parameters was created (R2 = 0.83; Q2 = 0.59 and Rpred2 = 0.84) using 29 TRPA1 agonists. Obtained results from this model were used for the design of novel TRPA1 activators, and to predict their activity against TRPA1. Predicted pEC50 activities of these molecules range between 4.996 to 5.235 compared to experimental pEC50 of 4.77 for carvacrol. Molecular docking studies showed that designed molecules interact with similar amino acid residues of the TRPA1 channel as carvacrol, with eight compounds showing lower binding energies. In conclusion, carvacrol-induced vasodilation is partly mediated by the activation of TRPA1 channels. Combining different in silico approaches pointed out that the molecule D27 (2-[2-(hydroxymethyl)-4-methylphenyl]acetamide) is the best candidate for further synthesis and experimental evaluation in in vitro conditions.

2.
Can J Physiol Pharmacol ; 102(3): 206-217, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909404

RESUMEN

Hypotensive influences of benzodiazepines and other GABAA receptor ligands, recognized in clinical practice, seem to stem from the existence of "vascular" GABAA receptors in peripheral blood vessels, besides any mechanisms in the central and peripheral nervous systems. We aimed to further elucidate the vasodilatatory effects of ligands acting through GABAA receptors. Using immunohistochemistry, the rat aortic smooth muscle layer was found to express GABAA γ2 and α1-5 subunit proteins. To confirm the role of "vascular" GABAA receptors, we investigated the vascular effects of standard benzodiazepines, midazolam, and flumazenil, as well as the novel compound MP-III-058. Using two-electrode voltage clamp electrophysiology and radioligand binding assays, MP-III-058 was found to have modest binding but substantial functional selectivity for α5ß3γ2 over other αxß3γ2 GABAA receptors. Tissue bath assays revealed comparable vasodilatory effects of MP-III-058 and midazolam, both of which at 100 µmol/L concentrations had efficacy similar to prazosin. Flumazenil exhibited weak vasoactivity per se, but significantly prevented the relaxant effects of midazolam and MP-III-058. These studies indicate the existence of functional GABAA receptors in the rat aorta, where ligands exert vasodilatory effects by positive modulation of the benzodiazepine binding site, suggesting the potential for further quest for leads with optimized pharmacokinetic properties as prospective adjuvant vasodilators.


Asunto(s)
Flumazenil , Midazolam , Animales , Ratas , Midazolam/farmacología , Flumazenil/farmacología , Benzodiazepinas/farmacología , Aorta , Receptores de GABA-A , Ácido gamma-Aminobutírico
3.
Exp Physiol ; 108(12): 1569-1578, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37837634

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the biggest challenges in performing in vitro studies on isolated human umbilical arteries? What is the main finding and its importance? The protocols presented in this study indicate some potential outcomes important for interpretation of the vascular responsivities of human umbilical arteries and could be useful for planning future in vitro studies with human umbilical arteries. ABSTRACT: Human umbilical artery (HUA) preparations are of particular importance for in vitro studies on isolated blood vessels because their sampling is not risky for the patient, and they can provide the closest possible impression of changes related to the uteroplacental circulation during pre-eclampsia. Using organ bath techniques, useful experimental protocols are provided for measuring some pathophysiological phenomena in the vascular responses of HUAs. Several vasoconstrictors (serotonin, prostaglandin F and phenylephrine) and vasodilators (acetylcholine and minoxidil) were seleted for determination of their vasoactivity in HUAs. The role of L-type voltage-operated calcium channels and different types of potassium channels (KATP , BKCa and KV ) were assessed, as was the impact of homocysteine. Serotonin was confirmed to be the most potent vasoconstrictor, while acetylcholine and phenylephrine caused variability in the relaxation and contraction response of HUA, respectively. The observed increase in serotonin-induced contraction and a decrease in minoxidil-induced relaxation in the presence of homocysteine suggested its procontractile effect on HUA preparations. Using selective blockers, it was determined that KATP and KV channels participate in the minoxidil-induced relaxation, while L-type voltage-dependent Ca2+  channels play an important role in the serotonin-induced contraction. The presented protocols reveal some of the methodological challenges related to HUA preparations and indicate potential outcomes in interpreting the vascular effects of the investigated substances, both in physiological conditions and in the homocysteine-induced pre-eclampsia model.


Asunto(s)
Preeclampsia , Arterias Umbilicales , Embarazo , Femenino , Humanos , Arterias Umbilicales/fisiología , Serotonina , Acetilcolina/farmacología , Minoxidil/farmacología , Vasodilatación/fisiología , Vasoconstrictores/farmacología , Fenilefrina/farmacología , Homocisteína/farmacología , Adenosina Trifosfato/farmacología
4.
Pharmaceutics ; 15(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376144

RESUMEN

Takotsubo syndrome (TTS) is an acute heart failure syndrome characterised by catecholamine-induced oxidative tissue damage. Punica granatum, a fruit-bearing tree, is known to have high polyphenolic content and has been proven to be a potent antioxidant. This study aimed to investigate the effects of pomegranate peel extract (PoPEx) pre-treatment on isoprenaline-induced takotsubo-like myocardial injury in rats. Male Wistar rats were randomised into four groups. Animals in the PoPEx(P) and PoPEx + isoprenaline group (P + I) were pre-treated for 7 days with 100 mg/kg/day of PoPEx. On the sixth and the seventh day, TTS-like syndrome was induced in rats from the isoprenaline(I) and P + I groups by administering 85 mg/kg/day of isoprenaline. PoPEx pre-treatment led to the elevation of superoxide dismutase and catalase (p < 0.05), reduced glutathione (p < 0.001) levels, decreased the thiobarbituric acid reactive substances (p < 0.001), H2O2, O2- (p < 0.05), and NO2- (p < 0.001), in the P + I group, when compared to the I group. In addition, a significant reduction in the levels of cardiac damage markers, as well as a reduction in the extent of cardiac damage, was found. In conclusion, PoPEx pre-treatment significantly attenuated the isoprenaline-induced myocardial damage, primarily via the preservation of endogenous antioxidant capacity in the rat model of takotsubo-like cardiomyopathy.

5.
Can J Physiol Pharmacol ; 100(8): 755-762, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35507953

RESUMEN

Carvacrol (CRV) is the main compound of essential oils extracted primarily from Thymus and Origanum species. Its various biological activities were confirmed: antioxidant, anti-inflammatory, antibacterial, antifungal, anti-tumour, antinematodal, and vasorelaxant action. Although vasodilation mediated by CRV was previously described, the exact mechanism of its action has not yet been established. Hence, the aim of this study was to investigate CRV vasoactivity on human umbilical arteries (HUA) and the different pathways involved in its mechanism of action using the tissue bath methodology. CRV caused a significant decrease in vascular tension of 5-HT-pre-contracted umbilical arteries, with EC50 of 442.13 ± 33.8 µmol/L (mean ± standard error of the mean-SEM). At 300 µmol/L, CRV shifted downward the 5-HT concentration-response curve with a statistical significance of p < 0.001 obtained for the four highest concentrations. At a concentration of 1 mmol/L, CRV completely abolished BaCl2-induced contraction in Ca2+-free Krebs-Ringer bicarbonate solution and the BAY K 8644-induced contraction in Krebs-Ringer bicarbonate solution (p < 0.001). Isopentenyl pyrophosphate, the antagonist of TRPV3 channel, was able to decrease the efficacy of CRV (p < 0.001). The blocking of L-type Ca2+ channels on smooth muscle cells is the most probable mechanism of CRV-induced vasorelaxation. However, the role of TRPV3 channels in CRV-induced vasodilation of HUA cannot be excluded either.


Asunto(s)
Arterias Umbilicales , Vasodilatadores , Bicarbonatos/metabolismo , Bicarbonatos/farmacología , Cimenos , Endotelio Vascular , Humanos , Monoterpenos/farmacología , Serotonina/metabolismo , Arterias Umbilicales/metabolismo , Vasodilatación , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...