Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 37: 101695, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32905883

RESUMEN

Convergent evidence implicates impaired mitochondrial function and α-Synuclein accumulation as critical upstream events in the pathogenesis of Parkinson's disease, but comparatively little is known about how these factors interact to provoke neurodegeneration. We previously showed that α-Synuclein knockdown protected rat substantia nigra dopaminergic neurons from systemic exposure to the mitochondrial complex I inhibitor rotenone. Here we show that motor abnormalities prior to neuronal loss in this model are associated with extensive α-Synuclein-dependent cellular thiol oxidation. In order to elucidate the underlying events in vivo we constructed novel transgenic zebrafish that co-express, in dopaminergic neurons: (i) human α-Synuclein at levels insufficient to provoke neurodegeneration or neurobehavioral abnormalities; and (ii) genetically-encoded ratiometric fluorescent biosensors to detect cytoplasmic peroxide flux and glutathione oxidation. Live intravital imaging of the intact zebrafish CNS at cellular resolution showed unequivocally that α-Synuclein amplified dynamic cytoplasmic peroxide flux in dopaminergic neurons following exposure to the mitochondrial complex I inhibitors MPP+ or rotenone. This effect was robust and clearly evident following either acute or prolonged exposure to each inhibitor. In addition, disturbance of the resting glutathione redox potential following exogenous hydrogen peroxide challenge was augmented by α-Synuclein. Together these data show that α-Synuclein is a critical determinant of the redox consequences of mitochondrial dysfunction in dopaminergic neurons. The findings are important because the mechanisms underlying α-Synuclein-dependent reactive oxygen species fluxes and antioxidant suppression might provide a pharmacological target in Parkinson's disease to prevent progression from mitochondrial dysfunction and oxidative stress to cell death.


Asunto(s)
Neuronas Dopaminérgicas , alfa-Sinucleína , Animales , Neuronas Dopaminérgicas/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Peróxidos/metabolismo , Ratas , Pez Cebra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
J Appl Biomech ; 36(5): 360-367, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32963129

RESUMEN

There is a need for pedagogical techniques that increase student engagement among underrepresented groups in engineering. Relating engineering content to student interests, particularly through biomechanics applications, shows promise toward engaging a diverse group of students. This study investigates the effects of student interests on engagement and performance in 10th grade students enrolled in a summer program for students underrepresented in the science, technology, engineering, and mathematics fields. The authors assessed the effects of interest-tailored lectures on student engagement and performance in a 5-week program with bioengineering workshops, focusing on the delivery of biomechanics content. A total of 31 students received interest-tailored lectures (intervention) and 23 students received only generic lectures (control) in biomechanics. In addition, the authors assessed the effects of teaching method (lecture, classroom activities, and laboratory tours) on student engagement. The authors found interest-tailored lectures to significantly increase student engagement in lecture compared with generic lectures. Students that received interest-tailored lectures had an insignificant, but meaningful 5% increase in student performance. Students rated laboratory tours higher in engagement than other teaching methods. This study provides detailed examples that can directly assist student teaching and outreach in biomechanics. Furthermore, the pedagogical techniques in this study can be used to increase engagement of underrepresented students in engineering.

3.
Neurobiol Dis ; 95: 238-49, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27452482

RESUMEN

Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and methods we developed will be useful for future studies on mitochondrial dynamics in health and disease.


Asunto(s)
1-Metil-4-fenilpiridinio/farmacología , Transporte Axonal/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Dinámicas Mitocondriales , Neuroimagen , Animales , Transporte Axonal/fisiología , Axones/patología , Muerte Celular/efectos de los fármacos , Sistema Nervioso Central/fisiopatología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Intoxicación por MPTP/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/fisiología , Enfermedad de Parkinson/metabolismo , Pez Cebra
4.
Neurobiol Dis ; 74: 180-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25478815

RESUMEN

Disruption of the dynamic properties of mitochondria (fission, fusion, transport, degradation, and biogenesis) has been implicated in the pathogenesis of neurodegenerative disorders, including Parkinson's disease (PD). Parkin, the product of gene PARK2 whose mutation causes familial PD, has been linked to mitochondrial quality control via its role in regulating mitochondrial dynamics, including mitochondrial degradation via mitophagy. Models using mitochondrial stressors in numerous cell types have elucidated a PINK1-dependent pathway whereby Parkin accumulates on damaged mitochondria and targets them for mitophagy. However, the role Parkin plays in regulating mitochondrial homeostasis specifically in neurons has been less clear. We examined whether a stressor linked to neurodegeneration, glutamate excitotoxicity, elicits Parkin-mitochondrial translocation and mitophagy in neurons. We found that brief, acute exposure to glutamate causes Parkin translocation to mitochondria in neurons, in a calcium- and N-methyl-d-aspartate (NMDA) receptor-dependent manner. In addition, we found that Parkin accumulates on endoplasmic reticulum (ER) and mitochondrial/ER junctions following excitotoxicity, supporting a role for Parkin in mitochondrial-ER crosstalk in mitochondrial homeostasis. Despite significant Parkin-mitochondria translocation, however, we did not observe mitophagy under these conditions. To further investigate, we examined the role of glutamate-induced oxidative stress in Parkin-mitochondria accumulation. Unexpectedly, we found that glutamate-induced accumulation of Parkin on mitochondria was promoted by the antioxidant N-acetyl cysteine (NAC), and that co-treatment with NAC facilitated Parkin-associated mitophagy. These results suggest the possibility that mitochondrial depolarization and oxidative damage may have distinct pathways associated with Parkin function in neurons, which may be critical in understanding the role of Parkin in neurodegeneration.


Asunto(s)
Acetilcisteína/metabolismo , Retículo Endoplásmico/metabolismo , Ácido Glutámico/toxicidad , Mitocondrias/fisiología , Neuronas/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Acetilcisteína/administración & dosificación , Animales , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Chaperonina 60/metabolismo , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , GTP Fosfohidrolasas , Ácido Glutámico/administración & dosificación , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transfección , Ubiquitina-Proteína Ligasas/genética
5.
Free Radic Biol Med ; 65: 419-427, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23816523

RESUMEN

Oxidative stress and mitochondrial dysfunction are known to contribute to the pathogenesis of Parkinson's disease. Dopaminergic neurons may be more sensitive to these stressors because they contain dopamine (DA), a molecule that oxidizes to the electrophilic dopamine quinone (DAQ) which can covalently bind nucleophilic amino acid residues such as cysteine. The identification of proteins that are sensitive to covalent modification and functional alteration by DAQ is of great interest. We have hypothesized that selenoproteins, which contain a highly nucleophilic selenocysteine residue and often play vital roles in the maintenance of neuronal viability, are likely targets for the DAQ. Here we report the findings of our studies on the effect of DA oxidation and DAQ on the mitochondrial antioxidant selenoprotein glutathione peroxidase 4 (GPx4). Purified GPx4 could be covalently modified by DAQ, and the addition of DAQ to rat testes lysate resulted in dose-dependent decreases in GPx4 activity and monomeric protein levels. Exposing intact rat brain mitochondria to DAQ resulted in similar decreases in GPx4 activity and monomeric protein levels as well as detection of multiple forms of DA-conjugated GPx4 protein. Evidence of both GPx4 degradation and polymerization was observed following DAQ exposure. Finally, we observed a dose-dependent loss of mitochondrial GPx4 in differentiated PC12 cells treated with dopamine. Our findings suggest that a decrease in mitochondrial GPx4 monomer and a functional loss of activity may be a contributing factor to the vulnerability of dopaminergic neurons in Parkinson's disease.


Asunto(s)
Dopamina/análogos & derivados , Neuronas Dopaminérgicas/metabolismo , Glutatión Peroxidasa/metabolismo , Animales , Western Blotting , Dopamina/metabolismo , Técnicas In Vitro , Células PC12 , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ratas
6.
J Neurochem ; 106(1): 333-46, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18384645

RESUMEN

In Parkinson's disease, oxidative stress is implicated in protein misfolding and aggregation, which may activate the unfolded protein response by the endoplasmic reticulum (ER). Dopamine (DA) can initiate oxidative stress via H(2)O(2) formation by DA metabolism and by oxidation into DA quinone. We have previously shown that DA quinone induces oxidative protein modification, mitochondrial dysfunction in vitro, and dopaminergic cell toxicity in vivo and in vitro. In this study, we used cysteine- and lysine-reactive fluorescent dyes with 2D difference in-gel electrophoresis, mass spectrometry, and peptide mass fingerprint analysis to identify proteins in PC12 cell mitochondrial-enriched fractions that were altered in abundance following DA exposure (150 muM, 16 h). Quantitative changes in proteins labeled with fluorescent dyes indicated increases in a subset of proteins after DA exposure: calreticulin, ERp29, ERp99, Grp58, Grp78, Grp94 and Orp150 (149-260%), and decreased levels of aldolase A (39-42%). Changes in levels of several proteins detected by 2D difference in-gel electrophoresis were confirmed by western blot. Using this unbiased proteomics approach, our findings demonstrated that in PC12 cells, DA exposure leads to a cellular response indicative of ER stress prior to the onset of cell death, providing a potential link between DA and the unfolded protein response in the pathogenesis of Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Retículo Endoplásmico/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Proteínas de Choque Térmico/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Animales , Calreticulina/efectos de los fármacos , Calreticulina/metabolismo , Dopamina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Electroforesis en Gel Bidimensional , Retículo Endoplásmico/efectos de los fármacos , Colorantes Fluorescentes , Fructosa-Bifosfato Aldolasa/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/efectos de los fármacos , Espectrometría de Masas , Glicoproteínas de Membrana/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/efectos de los fármacos , Chaperonas Moleculares/metabolismo , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Proteína Disulfuro Isomerasas/efectos de los fármacos , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Proteínas/efectos de los fármacos , Proteínas/metabolismo , Ratas , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
7.
Neurobiol Dis ; 29(3): 477-89, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18226537

RESUMEN

Oxidative stress and mitochondrial dysfunction have been linked to dopaminergic neuron degeneration in Parkinson disease. We have previously shown that dopamine oxidation leads to selective dopaminergic terminal degeneration in vivo and alters mitochondrial function in vitro. In this study, we utilized 2-D difference in-gel electrophoresis to assess changes in the mitochondrial proteome following in vitro exposure to reactive dopamine quinone. A subset of proteins exhibit decreased fluorescence labeling following dopamine oxidation, suggesting a rapid loss of specific proteins. Amongst these proteins are mitochondrial creatine kinase, mitofilin, mortalin, the 75 kDa subunit of NADH dehydrogenase, and superoxide dismutase 2. Western blot analyses for mitochondrial creatine kinase and mitofilin confirmed significant losses in isolated brain mitochondria exposed to dopamine quinone and PC12 cells exposed to dopamine. These results suggest that specific mitochondrial proteins are uniquely susceptible to changes in abundance following dopamine oxidation, and carry implications for mitochondrial stability in Parkinson disease neurodegeneration.


Asunto(s)
Encéfalo/fisiología , Dopamina/análogos & derivados , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Proteómica/métodos , Animales , Encéfalo/efectos de los fármacos , Dopamina/genética , Dopamina/metabolismo , Dopamina/toxicidad , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Células PC12 , Enfermedad de Parkinson/genética , Ratas , Ratas Sprague-Dawley
8.
Antioxid Redox Signal ; 7(5-6): 630-8, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15890007

RESUMEN

Deficiencies in Complex I have been observed in Parkinson's disease (PD) patients. Systemic exposure to rotenone, a Complex I inhibitor, has been shown to lead to selective dopaminergic cell death in vivo and toxicity in many in vitro models, including dopaminergic cell cultures. However, it remains unclear why rotenone seems to affect dopaminergic cells more adversely. Therefore, the role of dopamine (DA) in rotenone-induced PC12 cell toxicity was examined. Rotenone (1.0 muM) caused significant toxicity in differentiated PC12 cells, which was accompanied by decreases in ATP levels, changes in catechol levels, and increased DA oxidation. To determine whether endogenous DA makes PC12 cells more susceptible to rotenone, cells were treated with the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine (AMPT) to reduce DA levels prior to rotenone exposure, and then cell viability was measured. No changes in rotenone-induced toxicity were observed with or without AMPT treatment. However, a potentiation of toxicity was observed following coexposure of PC12 cells to rotenone and methamphetamine. To determine whether this effect was due to DA, PC12 cells were depleted of DA prior to methamphetamine and rotenone cotreatment, resulting in a large attenuation in toxicity. These findings suggest that DA plays a role in rotenone-induced toxicity and possibly the vulnerability of DA neurons in PD.


Asunto(s)
Dopamina/metabolismo , Rotenona/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Catecoles/metabolismo , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Metanfetamina/metabolismo , Oxidación-Reducción/efectos de los fármacos , Células PC12 , Ratas , Tirosina 3-Monooxigenasa/antagonistas & inhibidores , Tirosina 3-Monooxigenasa/metabolismo , alfa-Metiltirosina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...