Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38531632

RESUMEN

BMAL2 (ARNTL2) is a paralog of BMAL1 that can form heterodimers with the other circadian factors CLOCK and NPAS2 to activate transcription of clock and clock-controlled genes. To assess a possible role of Bmal2 in the circadian regulation of metabolism, we investigated daily variations of energy metabolism, feeding behavior, and locomotor behavior, as well as ability to anticipate restricted food access in male mice knock-out for Bmal2 (B2KO). While their amount of food intake and locomotor activity were normal compared with wild-type mice, B2KO mice displayed increased adiposity (1.5-fold higher) and fasted hyperinsulinemia (fourfold higher) and tended to have lower energy expenditure at night. Impairment of the master clock in the suprachiasmatic nuclei was evidenced by the shorter free-running period (-14 min/cycle) of B2KO mice compared with wild-type controls and by a loss of daily rhythmicity in expression of intracellular metabolic regulators (e.g., Lipoprotein lipase and Uncoupling protein 2). The circadian window of eating was longer in B2KO mice. The circadian patterns of food intake and meal numbers were bimodal in control mice but not in B2KO mice. In response to restricted feeding, food-anticipatory activity was almost prevented in B2KO mice, suggesting altered food clock that controls anticipation of food availability. In the mediobasal hypothalamus of B2KO mice, expression of genes coding orexigenic neuropeptides (including Neuropeptide y and Agouti-Related Peptide) was downregulated, while Lipoprotein lipase expression lost its rhythmicity. Together, these data highlight that BMAL2 has major impacts on brain regulation of metabolic rhythms, sleep-wake cycle, and food anticipation.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Metabolismo Energético , Conducta Alimentaria , Hipotálamo , Ratones Noqueados , Animales , Ratones , Metabolismo Energético/fisiología , Metabolismo Energético/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Masculino , Conducta Alimentaria/fisiología , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Actividad Motora/genética , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología
2.
Nat Commun ; 11(1): 2403, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415105

RESUMEN

Large volume effusive eruptions with relatively minor observed precursory signals are at odds with widely used models to interpret volcano deformation. Here we propose a new modelling framework that resolves this discrepancy by accounting for magma buoyancy, viscoelastic crustal properties, and sustained magma channels. At low magma accumulation rates, the stability of deep magma bodies is governed by the magma-host rock density contrast and the magma body thickness. During eruptions, inelastic processes including magma mush erosion and thermal effects, can form a sustained channel that supports magma flow, driven by the pressure difference between the magma body and surface vents. At failure onset, it may be difficult to forecast the final eruption volume; pressure in a magma body may drop well below the lithostatic load, create under-pressure and initiate a caldera collapse, despite only modest precursors.

3.
Int J Mol Sci ; 20(8)2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991638

RESUMEN

The cerebellum contains a circadian clock, generating internal temporal signals. The daily oscillations of cerebellar proteins were investigated in mice using a large-scale two-dimensional difference in gel electrophoresis (2D-DIGE). Analysis of 2D-DIGE gels highlighted the rhythmic variation in the intensity of 27/588 protein spots (5%) over 24 h based on cosinor regression. Notably, the rhythmic expression of most abundant cerebellar proteins was clustered in two main phases (i.e., midday and midnight), leading to bimodal distribution. Only six proteins identified here to be rhythmic in the cerebellum are also known to oscillate in the suprachiasmatic nuclei, including two proteins involved in the synapse activity (Synapsin 2 [SYN2] and vesicle-fusing ATPase [NSF]), two others participating in carbohydrate metabolism (triosephosphate isomerase (TPI1] and alpha-enolase [ENO1]), Glutamine synthetase (GLUL), as well as Tubulin alpha (TUBA4A). Most oscillating cerebellar proteins were not previously identified in circadian proteomic analyses of any tissue. Strikingly, the daily accumulation of mitochondrial proteins was clustered to the mid-resting phase, as previously observed for distinct mitochondrial proteins in the liver. Moreover, a number of rhythmic proteins, such as SYN2, NSF and TPI1, were associated with non-rhythmic mRNAs, indicating widespread post-transcriptional control in cerebellar oscillations. Thus, this study highlights extensive rhythmic aspects of the cerebellar proteome.


Asunto(s)
Cerebelo/metabolismo , Relojes Circadianos , Regulación de la Expresión Génica , Proteoma/análisis , Proteoma/genética , Animales , Cerebelo/química , Ritmo Circadiano , Masculino , Ratones , Ratones Endogámicos C57BL , Proteómica , ARN Mensajero/análisis , ARN Mensajero/genética , Electroforesis Bidimensional Diferencial en Gel
4.
Endocrinol Diabetes Metab ; 1(4): e00039, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30815567

RESUMEN

BACKGROUND: Melatonin is a hormone synthesized mainly by the pineal gland, and secreted only at night. Melatonin has been proposed as a modulator of glucose metabolism. METHODS: Here we studied the metabolic effects of melatonin administration alone (s.c. 10 mg/kg) or in combination with metformin (p.o. 300 mg/kg), a widely used anti-diabetic drug. These treatments were tested on glucose tolerance, insulin sensitivity and food intake in Zucker fatty rats (i.e., bearing a missense mutation in the leptin receptor gene) and high-fat fed Sprague-Dawley rats. RESULTS: Melatonin alone or in combination did not significantly modify glucose tolerance in either model. Melatonin alone in high-fat fed Sprague-Dawley improved insulin sensitivity to the level of metformin. In addition, combined treatment further ameliorated insulin sensitivity (+13%), especially during the late phase of rising glycemia. The lack of similar effects in Zucker rats suggests an involvement of leptin signaling in mediating the positive effects of melatonin. Body mass gain in Sprague-Dawley rats was decreased by both metformin, and combined metformin and melatonin. While melatonin alone did not markedly affect food intake, its combination with metformin led to a more pronounced anorexia (-17% food intake during the last week), as compared to metformin alone. CONCLUSIONS: Melatonin improves the beneficial effects of metformin on insulin sensitivity and body mass gain in high-fat fed Sprague-Dawley rats. Therefore, the combination of melatonin and metformin could be beneficial to develop dual therapies to treat or delay type 2 diabetes associated with obesity.

5.
J Neurosci ; 37(16): 4343-4358, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28320839

RESUMEN

Circadian rhythms in nocturnal and diurnal mammals are primarily synchronized to local time by the light/dark cycle. However, nonphotic factors, such as behavioral arousal and metabolic cues, can also phase shift the master clock in the suprachiasmatic nuclei (SCNs) and/or reduce the synchronizing effects of light in nocturnal rodents. In diurnal rodents, the role of arousal or insufficient sleep in these functions is still poorly understood. In the present study, diurnal Sudanian grass rats, Arvicanthis ansorgei, were aroused at night by sleep deprivation (gentle handling) or caffeine treatment that both prevented sleep. Phase shifts of locomotor activity were analyzed in grass rats transferred from a light/dark cycle to constant darkness and aroused in early night or late night. Early night, but not late night, sleep deprivation induced a significant phase shift. Caffeine on its own induced no phase shifts. Both sleep deprivation and caffeine treatment potentiated light-induced phase delays and phase advances in response to a 30 min light pulse, respectively. Sleep deprivation in early night, but not late night, potentiated light-induced c-Fos expression in the ventral SCN. Caffeine treatment in midnight triggered c-Fos expression in dorsal SCN. Both sleep deprivation and caffeine treatment potentiated light-induced c-Fos expression in calbindin-containing cells of the ventral SCN in early and late night. These findings indicate that, in contrast to nocturnal rodents, behavioral arousal induced either by sleep deprivation or caffeine during the sleeping period potentiates light resetting of the master circadian clock in diurnal rodents, and activation of calbindin-containing suprachiasmatic cells may be involved in this effect.SIGNIFICANCE STATEMENT Arousing stimuli have the ability to regulate circadian rhythms in mammals. Behavioral arousal in the sleeping period phase shifts the master clock in the suprachiasmatic nuclei and/or slows down the photic entrainment in nocturnal animals. How these stimuli act in diurnal species remains to be established. Our study in a diurnal rodent, the Grass rat, indicates that sleep deprivation in the early rest period induces phase delays of circadian locomotor activity rhythm. Contrary to nocturnal rodents, both sleep deprivation and caffeine-induced arousal potentiate the photic entrainment in a diurnal rodent. Such enhanced light-induced circadian responses could be relevant for developing chronotherapeutic strategies.


Asunto(s)
Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Relojes Circadianos/efectos de los fármacos , Privación de Sueño/fisiopatología , Animales , Luz , Masculino , Murinae , Fotoperiodo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología
6.
Chronobiol Int ; 34(1): 17-36, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27668547

RESUMEN

Restricted feeding during the resting period causes pronounced shifts in a number of peripheral clocks, but not the central clock in the suprachiasmatic nucleus (SCN). By contrast, daily caloric restriction impacts also the light-entrained SCN clock, as indicated by shifted oscillations of clock (PER1) and clock-controlled (vasopressin) proteins. To determine if these SCN changes are due to the metabolic or timing cues of the restricted feeding, mice were challenged with an ultradian 6-meals schedule (1 food access every 4 h) to abolish the daily periodicity of feeding. Mice fed with ultradian feeding that lost <10% body mass (i.e. isocaloric) displayed 1.5-h phase-advance of body temperature rhythm, but remained mostly nocturnal, together with up-regulated vasopressin and down-regulated PER1 and PER2 levels in the SCN. Hepatic expression of clock genes (Per2, Rev-erbα, and Clock) and Fgf21 was, respectively, phase-advanced and up-regulated by ultradian feeding. Mice fed with ultradian feeding that lost >10% body mass (i.e. hypocaloric) became more diurnal, hypothermic in late night, and displayed larger (3.5 h) advance of body temperature rhythm, more reduced PER1 expression in the SCN, and further modified gene expression in the liver (e.g. larger phase-advance of Per2 and up-regulated levels of Pgc-1α). While glucose rhythmicity was lost under ultradian feeding, the phase of daily rhythms in liver glycogen and plasma corticosterone (albeit increased in amplitude) remained unchanged. In conclusion, the additional impact of hypocaloric conditions on the SCN are mainly due to the metabolic and not the timing effects of restricted daytime feeding.


Asunto(s)
Relojes Biológicos/fisiología , Encéfalo/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiología , Hígado/metabolismo , Alimentación Animal , Crianza de Animales Domésticos , Animales , Peso Corporal , Proteínas CLOCK/genética , Ingestión de Alimentos/fisiología , Ingestión de Energía , Privación de Alimentos , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Núcleo Supraquiasmático/metabolismo
7.
Science ; 353(6296): aaf8988, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27418515

RESUMEN

Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption.

8.
Sci Rep ; 6: 29386, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27380954

RESUMEN

Foraging is costly in terms of time and energy. An endogenous food-entrainable system allows anticipation of predictable changes of food resources in nature. Yet the molecular mechanism that controls food anticipation in mammals remains elusive. Here we report that deletion of the clock component Rev-erbα impairs food entrainment in mice. Rev-erbα global knockout (GKO) mice subjected to restricted feeding showed reduced elevations of locomotor activity and body temperature prior to mealtime, regardless of the lighting conditions. The failure to properly anticipate food arrival was accompanied by a lack of phase-adjustment to mealtime of the clock protein PERIOD2 in the cerebellum, and by diminished expression of phosphorylated ERK 1/2 (p-ERK) during mealtime in the mediobasal hypothalamus and cerebellum. Furthermore, brain-specific knockout (BKO) mice for Rev-erbα display a defective suprachiasmatic clock, as evidenced by blunted daily activity under a light-dark cycle, altered free-running rhythm in constant darkness and impaired clock gene expression. Notably, brain deletion of Rev-erbα totally prevented food-anticipatory behaviour and thermogenesis. In response to restricted feeding, brain deletion of Rev-erbα impaired changes in clock gene expression in the hippocampus and cerebellum, but not in the liver. Our findings indicate that Rev-erbα is required for neural network-based prediction of food availability.


Asunto(s)
Encéfalo/metabolismo , Ritmo Circadiano , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Anticipación Psicológica , Temperatura Corporal , Conducta Alimentaria , Locomoción , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Fotoperiodo
9.
Biochimie ; 124: 198-206, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26144489

RESUMEN

Growing evidence links metabolic disorders to circadian alterations. Genetically obese db/db mice, lacking the long isoform of leptin receptor, are a recognized model of type 2 diabetes. In this study, we aimed at characterizing the potential circadian alterations of db/db mice in comparison to db/+ control mice. By using telemetry devices, we first reported arrhythmicity in general activity of most db/db mice under both light-dark cycle and constant darkness, while their rhythm of body temperature is less dramatically disrupted. Water access restricted to nighttime restores significant rhythmicity in behaviorally arrhythmic db/db mice, indicating a masking effect of polydipsia when water is available ad libitum. Endogenous period of temperature rhythm under constant dark conditions is significantly increased (+30 min) in db/db compared with db/+ mice. Next, we studied the oscillations of clock proteins (PER1, PER2 and BMAL1) in the suprachiasmatic nuclei (SCN), the site of the master clock, and detected no difference according to the genotype. Furthermore, c-FOS and P-ERK1/2 expression in response to a light pulse in late night was significantly increased (+80 and +55%, respectively) in the SCN of these diabetic mice. We previously showed that, in addition to altered activity rhythms, db/db mice exhibit altered feeding rhythm. Therefore, we investigated daily patterns of clock protein expression in medial hypothalamic oscillators involved in feeding behavior (arcuate nucleus, ventro- and dorso-medial hypothalamic nuclei). Compared with db/+ mice, very subtle or no difference in oscillations of PER1 and BMAL1 is found in the medial hypothalamus. Although we did not find a clear link between altered hypothalamic clockwork and behavioral rhythms in db/db mice, our results highlight a lengthened endogenous period and altered photic integration in these genetically obese and diabetic mice.


Asunto(s)
Temperatura Corporal , Ritmo Circadiano , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Proteínas Circadianas Period/biosíntesis , Fenotipo , Animales , Ratones , Ratones Obesos , Proteína Quinasa 3 Activada por Mitógenos/biosíntesis , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Especificidad de la Especie
10.
FASEB J ; 29(12): 4794-803, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26260033

RESUMEN

Chronic jet lag or shift work is deleterious to human metabolic health, in that such circadian desynchronization is associated with being overweight and the prevalence of altered glucose metabolism. Similar metabolic changes are observed with age, suggesting that chronic jet lag and accelerated cell aging are intimately related, but the association remains to be determined. We addressed whether jet lag induces metabolic and cell aging impairments in young grass rats (2-3 mo old), using control old grass rats (12-18 mo old) as an aging reference. Desynchronized young and control old subjects had impaired glucose tolerance (+60 and +280%) when compared with control young animals. Despite no significant variation in liver DNA damage, shorter telomeres were characterized, not only in old animal liver cells (-18%), but also at an intermediate level in desynchronized young rats (-9%). The same pattern was found for deacetylase sirtuin (SIRT)-1 (-57 and -29%), confirming that jet-lagged young rats have an intermediate aging profile. Our data indicate that an experimental circadian desynchronization in young animals is associated with a precocious aging profile based on 3 well-known markers, as well as a prediabetic phenotype. Such chronic jet lag-induced alterations observed in a diurnal species constitute proof of principle of the need to develop preventive treatments in jet-lagged persons and shift workers.


Asunto(s)
Senescencia Celular , Ritmo Circadiano , Muridae/fisiología , Animales , Glucemia/análisis , Corticosterona/sangre , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Masculino , Acortamiento del Telómero
11.
Front Neurosci ; 9: 190, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074760

RESUMEN

Nocturnal secretion of melatonin from the pineal gland may affect central and peripheral timing, in addition to its well-known involvement in the control of seasonal physiology. The Syrian hamster is a photoperiodic species, which displays gonadal atrophy and increased adiposity when adapted to short (winter-like) photoperiods. Here we investigated whether pineal melatonin secreted at night can impact daily rhythmicity of metabolic hormones and glucose in that seasonal species. For that purpose, daily variations of plasma leptin, cortisol, insulin and glucose were analyzed in pinealectomized hamsters, as compared to sham-operated controls kept under very long (16 h light/08 h dark) or short photoperiods (08 h light/16 h dark). Daily rhythms of leptin under both long and short photoperiods were blunted by pinealectomy. Furthermore, the phase of cortisol rhythm under a short photoperiod was advanced by 5.6 h after pinealectomy. Neither plasma insulin, nor blood glucose displays robust daily rhythmicity, even in sham-operated hamsters. Pinealectomy, however, totally reversed the decreased levels of insulin under short days and the photoperiodic variations in mean levels of blood glucose (i.e., reduction and increase in long and short days, respectively). Together, these findings in Syrian hamsters show that circulating melatonin at night drives the daily rhythmicity of plasma leptin, participates in the phase control of cortisol rhythm and modulates glucose homeostasis according to photoperiod-dependent metabolic state.

12.
Chronobiol Int ; 32(5): 637-49, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26035479

RESUMEN

Leptin may affect central and/or peripheral timing, in addition to its well-known regulatory effects on metabolism. Here, we investigated whether leptin can impact rhythmicity of blood glucose and lipids. For that purpose, daily variations of blood glucose and lipids were compared between mice lacking functional leptin receptor (db/db) or deficient for leptin (ob/ob) and controls (db/+ and ob/+, respectively). Next, we investigated whether timed treatment with exogenous leptin in ob/ob mice could modulate blood glucose rhythm. Mice with defective leptin signaling (db/db and ob/ob) have the same phase-opposed timing in glycemia (11 and 9 h shift, respectively) compared to respective controls. By contrast, the phase of plasma lipids rhythms (e.g. triglycerides, non-esterified fatty acid - NEFA, high density lipoprotein - HDL, low density lipoprotein - LDL) remained essentially unchanged, whatever the genotype. Daily injections of leptin (1 mg/kg) in ob/ob mice during nighttime or daytime led to 1-2 h phase-advances of blood glucose rhythm and glucose arrhythmicity, respectively. These injections induced additional phase-dependent shifts of feeding rhythm (ranging from 2.6 h phase-delays to 2.6 h advances). The present study reveals a chronomodulatory role of leptin, and highlights that rhythmic leptin can be a determinant of daily variations of blood glucose and food intake, though not for lipids.


Asunto(s)
Glucemia/metabolismo , Ritmo Circadiano/efectos de los fármacos , Leptina/farmacología , Animales , Insulina/sangre , Leptina/sangre , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo
13.
PLoS One ; 10(5): e0126519, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25970608

RESUMEN

When food availability is restricted, animals adjust their behavior according to the timing of food access. Most rodents, such as rats and mice, and a wide number of other animals express before timed food access a bout of activity, defined as food-anticipatory activity (FAA). One notable exception amongst rodents is the Syrian hamster, a photoperiodic species that is not prone to express FAA. The present study was designed to understand the reasons for the low FAA in that species. First, we used both wheel-running activity and general cage activity to assess locomotor behavior. Second, the possible effects of photoperiod was tested by challenging hamsters with restricted feeding under long (LP) or short (SP) photoperiods. Third, because daytime light may inhibit voluntary activity, hamsters were also exposed to successive steps of full and skeleton photoperiods (two 1-h light pulses simulating dawn and dusk). When hamsters were exposed to skeleton photoperiods, not full photoperiod, they expressed FAA in the wheel independently of daylength, indicating that FAA in the wheel is masked by daytime light under full photoperiods. During FAA under skeleton photoperiods, c-Fos expression was increased in the arcuate nuclei independently of the photoperiod, but differentially increased in the ventromedial and dorsomedial hypothalamic nuclei according to the photoperiod. FAA in general activity was hardly modulated by daytime light, but was reduced under SP. Together, these findings show that food-restricted Syrian hamsters are not prone to display FAA under common laboratory conditions, because of the presence of light during daytime that suppresses FAA expression in the wheel.


Asunto(s)
Conducta Alimentaria , Hipotálamo/metabolismo , Animales , Cricetinae , Hidrocortisona/sangre , Mesocricetus , Fotoperiodo , Proteínas Proto-Oncogénicas c-fos/metabolismo
14.
Brain Res ; 1594: 165-72, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25449886

RESUMEN

A major challenge in the field of circadian rhythms is to understand the neural mechanisms controlling the oppositely phased temporal organization of physiology and behaviour between night- and day-active animals. Most identified components of the master clock in the suprachiasmatic nuclei (SCN), called circadian genes, display similar oscillations according to the time of day, independent of the temporal niche. This has led to the predominant view that the switch between night- and day-active animals occurs downstream of the master clock, likely also involving differential feedback of behavioral cues onto the SCN. The Barbary striped grass mouse, Lemniscomys barbarus is known as a day-active Muridae. Here we show that this rodent, when housed in constant darkness, displays a temporal rhythmicity of metabolism matching its diurnal behaviour (i.e., high levels of plasma leptin and hepatic glycogen during subjective midday and dusk, respectively). Regarding clockwork in their SCN, these mice show peaks in the mRNA profiles of the circadian gene Period1 (Per1) and the clock-controlled gene Vasopressin (Avp), which occur during the middle and late subjective day, respectively, in accordance with many observations in both diurnal and nocturnal species. Strikingly, expression of the circadian gene Clock in the SCN of the Barbary striped grass mouse was not constitutive as in nocturnal rodents, but it was rhythmic. As this is also the case for the other diurnal species investigated in the literature (sheep, marmoset, and quail), a hypothesis is that the transcriptional control of Clock within the SCN participates in the mechanisms underlying diurnality and nocturnality.


Asunto(s)
Proteínas CLOCK/genética , Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/metabolismo , Animales , Glucógeno/metabolismo , Hibridación in Situ , Leptina/sangre , Ratones , Proteínas Circadianas Period/biosíntesis , Proteínas Circadianas Period/genética , Vasopresinas/biosíntesis
15.
Nature ; 517(7533): 191-5, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25517098

RESUMEN

Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

16.
Neurobiol Aging ; 34(6): 1589-98, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23273571

RESUMEN

The elderly population shows various circadian disturbances, including dampened amplitude of rhythmicity and decreased responsiveness to light. The common poor folate status in the elderly might account for these aging-related circadian disturbances. To test this hypothesis, we investigated whether folate deficiency in mice affects circadian oscillations of the master clock in the suprachiasmatic nuclei, and the shifting responses to light. Mice fed a diet without folate for 6 weeks displayed markedly reduced (4.5-fold) erythrocyte folate concentration and increased (2.3-fold) homocysteinemia compared with control mice. Folate deficiency decreased the circadian amplitude of vasopressin and the clock protein PERIOD 2 (PER2) in the master clock, slowed the rate of re-entrainment of behavioral rhythms after delayed light-dark cycle and reduced light-induced phase-delays, without detectable morphologic changes in the retina, such as the number of melanopsinergic ganglion cells, that might have impaired photodetection. In conclusion, folate deficiency and consecutive hyperhomocysteinemia led to dampened PER2 and vasopressin oscillations in the master clock and reduced responsiveness to photic resetting, which constitute hallmarks of aging effects on circadian rhythmicity.


Asunto(s)
Envejecimiento/fisiología , Ritmo Circadiano/fisiología , Deficiencia de Ácido Fólico/metabolismo , Proteínas Circadianas Period/metabolismo , Animales , Encéfalo/metabolismo , Deficiencia de Ácido Fólico/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Circadianas Period/antagonistas & inhibidores , Retina/metabolismo , Vasopresinas/metabolismo
17.
FASEB J ; 26(8): 3321-35, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22562834

RESUMEN

Mutations of clock genes can lead to diabetes and obesity. REV-ERBα, a nuclear receptor involved in the circadian clockwork, has been shown to control lipid metabolism. To gain insight into the role of REV-ERBα in energy homeostasis in vivo, we explored daily metabolism of carbohydrates and lipids in chow-fed, unfed, or high-fat-fed Rev-erbα(-/-) mice and their wild-type littermates. Chow-fed Rev-erbα(-/-) mice displayed increased adiposity (2.5-fold) and mild hyperglycemia (∼10%) without insulin resistance. Indirect calorimetry indicates that chow-fed Rev-erbα(-/-) mice utilize more fatty acids during daytime. A 24-h nonfeeding period in Rev-erbα(-/-) animals favors further fatty acid mobilization at the expense of glycogen utilization and gluconeogenesis, without triggering hypoglycemia and hypothermia. High-fat feeding in Rev-erbα(-/-) mice amplified metabolic disturbances, including expression of lipogenic factors. Lipoprotein lipase (Lpl) gene, critical in lipid utilization/storage, is triggered in liver at night and constitutively up-regulated (∼2-fold) in muscle and adipose tissue of Rev-erbα(-/-) mice. We show that CLOCK, up-regulated (2-fold) at night in Rev-erbα(-/-) mice, can transactivate Lpl. Thus, overexpression of Lpl facilitates muscle fatty acid utilization and contributes to fat overload. This study demonstrates the importance of clock-driven Lpl expression in energy balance and highlights circadian disruption as a potential cause for the metabolic syndrome.


Asunto(s)
Proteínas CLOCK/fisiología , Metabolismo de los Hidratos de Carbono/fisiología , Metabolismo Energético/fisiología , Metabolismo de los Lípidos/fisiología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/fisiología , Animales , Ritmo Circadiano/fisiología , Dieta Alta en Grasa , Femenino , Gluconeogénesis/fisiología , Homeostasis/fisiología , Resistencia a la Insulina/fisiología , Lipoproteína Lipasa/metabolismo , Glucógeno Hepático/metabolismo , Masculino , Ratones , Actividad Motora , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/deficiencia
18.
J Physiol ; 590(13): 3155-68, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22570380

RESUMEN

Caloric restriction attenuates the onset of a number of pathologies related to ageing. In mammals, circadian rhythms, controlled by the hypothalamic suprachiasmatic (SCN) clock, are altered with ageing. Although light is the main synchronizer for the clock, a daily hypocaloric feeding (HF) may also modulate the SCN activity in nocturnal rodents. Here we report that a HF also affects behavioural, physiological and molecular circadian rhythms of the diurnal rodent Arvicanthis ansorgei. Under constant darkness HF, but not normocaloric feeding (NF), entrains circadian behaviour. Under a light­dark cycle, HF at midnight led to phase delays of the rhythms of locomotor activity and plasma corticosterone. Furthermore, Per2 and vasopressin gene oscillations in the SCN were phase delayed in HF Arvicanthis compared with animals fed ad libitum. Moreover, light-induced expression of Per genes in the SCN was modified in HF Arvicanthis, despite a non-significant effect on light-induced behavioural phase delays. Together, our data show that HF affects the circadian system of the diurnal rodent Arvicanthis ansorgei differentially from nocturnal rodents. The Arvicanthis model has relevance for the potential use of HF to manipulate circadian rhythms in diurnal species including humans.


Asunto(s)
Restricción Calórica , Relojes Circadianos/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Conducta Animal , Glucemia/análisis , Expresión Génica , Masculino , Proteínas del Tejido Nervioso/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Proteínas Circadianas Period/genética , Roedores , Carrera , Vasopresinas/genética
19.
Biotechniques ; 51(3): 167-77, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21906038

RESUMEN

Ultra-deep sequencing (UDS) of amplicons is a major application for next-generation sequencing technologies, even more so for the 454 Genome Sequencer FLX. Especially for this application, errors that might be introduced during any of the sample processing or data analysis steps should be avoided or at least recognized, as they might lead to aberrant sequence variant calling. Since 454 pyrosequencing relies on PCR-driven target amplification, it is key to differentiate errors introduced during the amplification step from genuine minority variants. Thereto, optimal primer design is imperative because primer selection, primer dimer formation, and nonspecific binding may all affect the quality and outcome of amplicon-based deep sequencing. Also, other intrinsic PCR characteristics including amplification drift and the formation of secondary structures may influence sequencing data quality. We illustrate these phenomena using real life case studies and propose experimental and analytical evidence-based solutions for effective practice. Furthermore, because accuracy of the DNA polymerase is vital for reliable UDS results, a comparative analysis of error profiles from seven different DNA polymerases was performed and experimentally assessed in parallel by 454 sequencing. Finally, intra and interrun variability evaluation of the 454 sequencing protocol revealed highly reproducible results in amplicon-based UDS.


Asunto(s)
Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Humanos , Control de Calidad , Estándares de Referencia
20.
Clin Chem Lab Med ; 48(8): 1095-102, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20578969

RESUMEN

BACKGROUND: Hepatitis C virus (HCV) genotyping and accurate subtype determination is becoming increasingly important to better understand viral evolution, the development of resistance to STAT-C, and possibly even for the treatment and management of chronic HCV-infected patients. METHODS: A subtyping assay based on a 329-bp sequence of the NS5B region, together with an automated subtype interpretation tool was developed. Clinical samples of the six major genotypes were used to assess assay performance characteristics. RESULTS: The NS5B BLAST-based subtyping assay showed clinical sensitivity for amplification of 89% (n=603 random samples). Assessment of analytical sensitivity of amplification for genotypes 1, 2, 3 and 4 revealed a suitable performance for high viral load samples and decreased only with low viral loads. The results were 100% and 99% accurate at the genotype and subtype level, respectively. A concordance of 97% on genotype level and 62% on subtype level was observed by comparison with subtype results from 5' non-coding-based assays with a panel of 276 isolates. CONCLUSIONS: The HCV NS5B subtyping assay has been validated for research use. Based on its performance, it is the method of choice in cases where subtype rather than genotype information is needed.


Asunto(s)
Hepacivirus/clasificación , Subunidades de Proteína/genética , Proteínas no Estructurales Virales/genética , Automatización , Genotipo , Hepacivirus/genética , Hepacivirus/aislamiento & purificación , Humanos , Filogenia , ARN Viral/genética , Juego de Reactivos para Diagnóstico , Análisis de Secuencia de ARN , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA