RESUMEN
Plant-mediated solution casting is used to develop eco-friendly polymer blend nanocomposites from polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) doped with Silver (Ag), Ferrous (Fe) monometallic and Silver-Ferrous (Ag-Fe) bimetallic nanoparticles (NPs). These nanocomposites were studied to understand their electromagnetic interface (EMI) shielding efficiency and antimicrobial activities, besides evaluating their physical and chemical properties. The Fourier transform infrared (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray (EDX) characterization techniques were used to examine the interactions between the polymers, the presence of silver and ferrous particles in the composites, the crystallinity shift, the surface morphology, the shape and size of the nanoparticles and the distribution of the nanoparticles in the composites. The FTIR spectra showed the interactions among the components of the composites. According to XRD spectra, the incorporation of nanoparticles into the PVA polymer significantly reduced the crystalline character of the polymer from 0.38 to 0.24 for the composition consisting of silver and iron nanoparticles in equal proportion. The results from SEM, EDX and XRD corroborate the presence of nanoparticle forms. The thermogravimetric analysis (TGA) tests reveal that the thermal stability of bimetallic composites is greater than that of monometallic composites. The tensile properties showed that the addition of nanoparticles to the PVA/PVP polymer matrix increased its mechanical strength from 59.3 MPa to 85.5 MPa. We examined its efficacy against Escherichia coli, Staphylococcus aureus and Candida albicans as microorganisms. Good antibacterial and antifungal activity was observed. The bimetallic composites demonstrated greater activity than monometallic composites against these bacterial and fungal species. All bimetallic nanocomposites have shown enhanced, loss due to reflection, loss due to absorption, and the total EMI shielding efficiency at 8 GHz (X-band) and 16 GHz (Ku-band) frequency. All these results ratify, that these newly developed bio nanocomposites are most suitable in many applications, in EMI shielding, nanotechnology, and medical fields.
Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanocompuestos , Plata , Nanocompuestos/química , Nanopartículas del Metal/química , Plata/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Biopolímeros/química , Alcohol Polivinílico/química , Hierro/química , Tecnología Química Verde , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Pruebas de Sensibilidad Microbiana , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrolloRESUMEN
Tungsten oxide (WO3) as an efficient heterogeneous catalyst was prepared via a simple hydrothermal route for the synthesis of a wide range of bioactive heterocyclic compounds. The present investigation deals with the rapid and low-cost synthesis of C-3-alkylated 4-hydroxycoumarin, chromene, and xanthene derivatives. WO3 nanorods (NRs) are successfully envisaged to catalyze desired transformations, demonstrating the wide range of their potential applications in catalysis. Synthetic transformation details, smallest catalytic amounts, excellent product yields, and plausible reaction mechanisms for the formation of these heterocyclic scaffolds are elicidated. As-prepared WO3 NRs are characterized to confirm their structural, chemical, and morphological parameters by X-ray diffraction, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy measurements, respectively. We discuss the factors that govern the formation of products, and the active role of WO3 NRs, which are essential for the activation of substrates in the present study of thermal conditions. Herein, detailed synthesis and spectroscopic information of the prepared compounds are reported.