Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091860

RESUMEN

Early stages of Huntington's disease (HD) before the onset of motor and cognitive symptoms are characterized by imbalanced excitatory and inhibitory output from the cortex to striatal and subcortical structures. The window before the onset of symptoms presents an opportunity to adjust the firing rate within microcircuits with the goal of restoring the impaired E/I balance, thereby preventing or slowing down disease progression. Here, we investigated the effect of presymptomatic cell-type specific manipulation of activity of pyramidal neurons and parvalbumin interneurons in the M1 motor cortex on disease progression in the R6/2 HD mouse model. Our results show that dampening excitation of Emx1 pyramidal neurons or increasing activity of parvalbumin interneurons once daily for 3 weeks during the pre-symptomatic phase alleviated HD-related motor coordination dysfunction. Cell-type-specific modulation to normalize the net output of the cortex is a potential therapeutic avenue for HD and other neurodegenerative disorders.

2.
ACS Appl Mater Interfaces ; 16(32): 41907-41915, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39083440

RESUMEN

Polyamidoamine (PAMAM) dendrimers are nanoparticles that have a wide scope in the field of biomedicine. Previous evidence shows that the generation 4 (G4) dendrimers with a 100% amine surface (G4-NH2) are highly toxic to cells in vitro and in vivo due to their positively charged amine groups. To reduce the toxicity, we modified the surface of the dendrimers to have more neutral functional groups, with 10% of the surface covered with -NH2 and 90% of the surface covered with hydroxyl groups (-OH; G4-90/10). Our previous in vitro data show that these modified dendrimers are taken up by cells, neurons, and different types of stem cells in vitro and neurons and glial cells in vivo. The toxicity assay shows that these modified dendrimers are less toxic compared with G4-NH2 dendrimers. Moreover, prolonged dendrimer exposure (G1-90/10 and G4-90/10), up to 3 weeks following unilateral intrastriatal injections into the striatum of mice, showed that dendrimers have the tendency to migrate within the brain via corpus callosum at different rates depending on their size. We also found that there is a difference in migration between the G1 and G4 dendrimers based on their size differences. The G4 dendrimers migrate in the anterior and posterior directions as well as more laterally from the site of injection in the striatum compared to the G1 dendrimers. Moreover, the G4 dendrimers have unique projections from the site of injection to the cortical areas.


Asunto(s)
Dendrímeros , Dendrímeros/química , Dendrímeros/toxicidad , Animales , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Masculino , Propiedades de Superficie
3.
Behav Brain Res ; 471: 115121, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38945302

RESUMEN

Controlled nigrostriatal dopamine release supports effective limb use during locomotion coordination that becomes compromised after this pathway deteriorates in Parkinson's Disease (PD). How dopamine release relates to active ongoing behavior control remains unknown. Restoring proper release strategy appears important to successful PD treatment with transplanted dopamine-producing stem cells. This is suggested by apparently distinct behavioral support from tonic or phasic release and corresponding requirements of requisite afferent control exhibited by intact nigrostriatal neurons. Our laboratory previously demonstrated that transplanted dopaminergic cells can elicit skilled movement recovery known to depend on phasic dopamine release. However, efforts to measure this movement-related dopamine release yielded seemingly paradoxical, incongruent results. In response, here we explored whether those previous observations derived from rapid reuptake transport into either transplanted cells or residual, lesion-surviving terminals. We confirmed this using minimal reuptake blockade during intrastriatal microdialysis. After unilateral dopamine depletion, rats received transplants and were subjected to our swimming protocol. Among dopamine-depleted and transplanted rats, treatment supported restoration of limb movement symmetry. Interestingly, subsequent reuptake-restricted microdialysis confirmed distinct swimming-induced dopamine increases clearly occurred among these lesioned/transplanted subjects. Thus, phasic firing control appears to contribute to transplant-derived recovery in Parkinsonian animals.


Asunto(s)
Modelos Animales de Enfermedad , Dopamina , Microdiálisis , Animales , Dopamina/metabolismo , Masculino , Ratas , Mesencéfalo/metabolismo , Oxidopamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Cuerpo Estriado/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Extremidades , Sustancia Negra/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...