Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cytotherapy ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38819366

RESUMEN

BACKGROUND: Trained immunity results in long-term immunological memory, provoking a faster and greater immune response when innate immune cells encounter a secondary, often heterologous, stimulus. We have previously shown that house dust mite (HDM)-induced innate training is amplified in mice expressing the human macrophage migration inhibitory factor (MIF) CATT7 functional polymorphism. AIM: This study investigated the ability of mesenchymal stromal cells (MSCs) to modulate MIF-driven trained immunity both in vitro and in vivo. METHODS: Compared with wild-type mice, in vivo HDM-primed bone marrow-derived macrophages (BMDMs) from CATT7 mice expressed significantly higher levels of M1-associated genes following lipopolysaccharide stimulation ex vivo. Co-cultures of CATT7 BMDMs with MSCs suppressed this HDM-primed effect, with tumor necrosis factor alpha (TNF-α) being significantly decreased in a cyclooxygenase 2 (COX-2)-dependent manner. Interestingly, interleukin 6 (IL-6) was suppressed by MSCs independently of COX-2. In an in vitro training assay, MSCs significantly abrogated the enhanced production of pro-inflammatory cytokines by HDM-trained CATT7 BMDMs when co-cultured at the time of HDM stimulus on day 0, displaying their therapeutic efficacy in modulating an overzealous human MIF-dependent immune response. Utilizing an in vivo model of HDM-induced trained immunity, MSCs administered systemically on day 10 and day 11 suppressed this trained phenomenon by significantly reducing TNF-α and reducing IL-6 and C-C motif chemokine ligand 17 (CCL17) production. CONCLUSIONS: This novel study elucidates how MSCs can attenuate an MIF-driven, HDM-trained response in CATT7 mice in a model of allergic airway inflammation.

3.
FASEB J ; 38(6): e23576, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38530238

RESUMEN

High level expression of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) has been associated with severe asthma. The role of MIF and its functional promotor polymorphism in innate immune training is currently unknown. Using novel humanized CATT7 MIF mice, this study is the first to investigate the effect of MIF on bone marrow-derived macrophage (BMDM) memory after house dust mite (HDM) challenge. CATT7 BMDMs demonstrated a significant primed increase in M1 markers following HDM and LPS stimulation, compared to naive mice. This M1 signature was found to be MIF-dependent, as administration of a small molecule MIF inhibitor, SCD-19, blocked the induction of this pro-inflammatory M1-like phenotype in BMDMs from CATT7 mice challenged with HDM. Training naive BMDMs in vitro with HDM for 24 h followed by a rest period and subsequent stimulation with LPS led to significantly increased production of the pro-inflammatory cytokine TNFα in BMDMs from CATT7 mice but not WT mice. Addition of the pan methyltransferase inhibitor MTA before HDM training significantly abrogated this effect in BMDMs from CATT7 mice, suggesting that HDM-induced training is associated with epigenetic remodelling. These findings suggest that trained immunity induced by HDM is under genetic control, playing an important role in asthma patients with the high MIF genotypes (CATT6/7/8).


Asunto(s)
Asma , Factores Inhibidores de la Migración de Macrófagos , Humanos , Animales , Ratones , Factores Inhibidores de la Migración de Macrófagos/genética , Lipopolisacáridos/toxicidad , Pyroglyphidae , Asma/genética , Inflamación , Oxidorreductasas Intramoleculares/genética
4.
Mol Ther ; 31(11): 3243-3258, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37735872

RESUMEN

Current asthma therapies focus on reducing symptoms but fail to restore existing structural damage. Mesenchymal stromal cell (MSC) administration can ameliorate airway inflammation and reverse airway remodeling. However, differences in patient disease microenvironments seem to influence MSC therapeutic effects. A polymorphic CATT tetranucleotide repeat at position 794 of the human macrophage migration inhibitory factor (hMIF) gene has been associated with increased susceptibility to and severity of asthma. We investigated the efficacy of human MSCs in high- vs. low-hMIF environments and the impact of MIF pre-licensing of MSCs using humanized MIF mice in a clinically relevant house dust mite (HDM) model of allergic asthma. MSCs significantly attenuated airway inflammation and airway remodeling in high-MIF-expressing CATT7 mice but not in CATT5 or wild-type littermates. Differences in efficacy were correlated with increased MSC retention in the lungs of CATT7 mice. MIF licensing potentiated MSC anti-inflammatory effects at a previously ineffective dose. Mechanistically, MIF binding to CD74 expressed on MSCs leads to upregulation of cyclooxygenase 2 (COX-2) expression. Blockade of CD74 or COX-2 function in MSCs prior to administration attenuated the efficacy of MIF-licensed MSCs in vivo. These findings suggest that MSC administration may be more efficacious in severe asthma patients with high MIF genotypes (CATT6/7/8).


Asunto(s)
Asma , Factores Inhibidores de la Migración de Macrófagos , Células Madre Mesenquimatosas , Animales , Humanos , Ratones , Remodelación de las Vías Aéreas (Respiratorias) , Asma/terapia , Ciclooxigenasa 2/genética , Inflamación/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Células Madre Mesenquimatosas/metabolismo
5.
FASEB J ; 37(8): e23072, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498233

RESUMEN

Macrophage migration inhibitory factor (MIF) expression is controlled by a functional promoter polymorphism, where the number of tetranucleotide repeats (CATTn ) corresponds to the level of MIF expression. To examine the role of this polymorphism in a pre-clinical model of allergic asthma, novel humanized MIF mice with increasing CATT repeats (CATT5 and CATT7 ) were used to generate a physiologically relevant scale of airway inflammation following house dust mite (HDM) challenge. CATT7 mice expressing high levels of human MIF developed an aggressive asthma phenotype following HDM challenge with significantly elevated levels of immune cell infiltration, production of inflammatory mediators, goblet cell hyperplasia, subepithelial collagen deposition, and airway resistance compared to wild-type controls. Importantly the potent MIF inhibitor SCD-19 significantly mitigated the pathophysiology observed in CATT7 mice after HDM challenge, demonstrating the fundamental role of endogenous human MIF expression in the severity of airway inflammation in vivo. Up to now, there are limited reproducible in vivo models of asthma airway remodeling. Current asthma medications are focused on reducing the acute inflammatory response but have limited effects on airway remodeling. Here, we present a reproducible pre-clinical model that capitulates asthma airway remodeling and suggests that in addition to having pro-inflammatory effects MIF may play a role in driving airway remodeling.


Asunto(s)
Asma , Factores Inhibidores de la Migración de Macrófagos , Humanos , Animales , Ratones , Pyroglyphidae , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Pulmón/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo
7.
Cells ; 10(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34831203

RESUMEN

Recent clinical trials of mesenchymal stromal cell (MSC) therapy for various inflammatory conditions have highlighted the significant benefit to patients who respond to MSC administration. Thus, there is strong interest in investigating MSC therapy in acute inflammatory lung conditions, such as acute respiratory distress syndrome (ARDS). Unfortunately, not all patients respond, and evidence now suggests that the differential disease microenvironment present across patients and sub-phenotypes of disease or across disease severities influences MSC licensing, function and therapeutic efficacy. Here, we discuss the importance of licensing MSCs and the need to better understand how the disease microenvironment influences MSC activation and therapeutic actions, in addition to the need for a patient-stratification approach.


Asunto(s)
Inflamación/patología , Pulmón/patología , Células Madre Mesenquimatosas/patología , Animales , Humanos , Trasplante de Células Madre Mesenquimatosas , Investigación Biomédica Traslacional , Resultado del Tratamiento
8.
Stem Cells Transl Med ; 10(11): 1561-1574, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34397170

RESUMEN

Cell-based therapy for the treatment of inflammatory disorders has focused on the application of mesenchymal stromal cells (MSCs) and multipotent adult progenitor cells (MAPCs). Despite the recent positive findings in industry-sponsored clinical trials of MSCs and MAPCs for graft vs host disease (GvHD), cell therapy is efficacious in some but not all patients, highlighting the need to identify strategies to enhance cell-based therapeutic efficacy. Here, we demonstrate the capacity for interferon (IFN)-γ licensing to enhance human MAPC efficacy and retention following early administration in a humanized mouse model of acute GvHD (aGvHD). Activation of the nuclear receptor peroxisome proliferator-activated receptor delta (PPARδ) negatively influenced the retention and efficacy of human MAPCs as well as IFN-γ-licensed MAPCs in the aGvHD model. PPARδ antagonism significantly enhanced the efficacy of human MAPCs when administered early in the humanized aGvHD model. COX-2 expression in human MAPC was significantly decreased in IFN-γ licensed MAPCs exposed to a PPARδ agonist. Importantly, MAPC exposure to the PPARδ antagonist in the presence of a COX-2 inhibitor indomethacin before administration significantly reduced the efficacy of PPARδ antagonized MAPCs in the aGvHD humanized mouse model. This is the first study to demonstrate the importance of PPARδ in human MAPC efficacy in vivo and highlights the importance of understanding the disease microenvironment in which cell-based therapies are to be administered. In particular, the presence of PPARδ ligands may negatively influence MAPC or MSC therapeutic efficacy.


Asunto(s)
Células Madre Adultas , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , PPAR delta , Animales , Enfermedad Injerto contra Huésped/terapia , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Madre Multipotentes/metabolismo , PPAR delta/metabolismo
9.
Stem Cell Res Ther ; 12(1): 238, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853687

RESUMEN

Immunosuppressive ability in human MSC donors has been shown to be variable and may be a limiting factor in MSC therapeutic efficacy in vivo. The importance of cytokine activation of mesenchymal stromal cells (MSCs) to facilitate their immunosuppressive function is well established. This study sought to further understand the interactions between MSCs and the commonly used calcineurin inhibitor cyclosporine A (CsA). The existing literature regarding approaches that use MSCs and cyclosporine are conflicting regarding the effect of CsA on MSC potency and function. Here, we clearly demonstrate that when added at the same time as MSCs, CsA negatively affects MSC suppression of T cell proliferation. However, licencing MSCs with IFNγ before addition of CsA protects MSCs from this negative effect. Notably, adding CsA to MSCs after IFNγ pre-stimulation enhances MSC production of IDO. Mechanistically, we identified that CsA reduces SOCS1 expression to facilitate enhanced IDO production in IFNγ pre-stimulated MSCs. Importantly, CsA exposure to IFNγ pre-stimulated MSC before administration, significantly enhanced the potency of MSCs in a human relevant humanised mouse model of acute Graft versus Host Disease. In summary, this study identified a novel licencing strategy to enhance MSC potency in vitro and in vivo.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ciclosporina/farmacología , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Inmunosupresores , Activación de Linfocitos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA