Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSystems ; 7(5): e0058322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36073805

RESUMEN

The diversity and functional significance of microbiomes have become increasingly clear through the extensive sampling of Earth's many habitats and the rapid adoption of new sequencing technologies. However, much remains unknown about what makes a "healthy" microbiome, how to restore a disrupted microbiome, and how microbiomes assemble. In December 2019, we convened a workshop that focused on how to identify potential "rules of life" that govern microbiome structure and function. This collection of mSystems Perspective pieces reflects many of the main challenges and opportunities in the field identified by both in-person and virtual workshop participants. By borrowing conceptual and theoretical approaches from other fields, including economics and philosophy, these pieces suggest new ways to dissect microbiome patterns and processes. The application of conceptual advances, including trait-based theory and community coalescence, is providing new insights on how to predict and manage microbiome diversity and function. Technological and analytical advances, including deep transfer learning, metabolic models, and advances in analytical chemistry, are helping us sift through complex systems to pinpoint mechanisms of microbiome assembly and dynamics. Integration of all of these advancements (theory, concepts, technology) across biological and spatial scales is providing dramatically improved temporal and spatial resolution of microbiome dynamics. This integrative microbiome research is happening in a new moment in science where academic institutions, scientific societies, and funding agencies must act collaboratively to support and train a diverse and inclusive community of microbiome scientists.


Asunto(s)
Microbiota , Humanos , Microbiota/genética
2.
Plant Direct ; 6(8): e432, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36035898

RESUMEN

A future in which scientific discoveries are valued and trusted by the general public cannot be achieved without greater inclusion and participation of diverse communities. To envision a path towards this future, in January 2019 a diverse group of researchers, educators, students, and administrators gathered to hear and share personal perspectives on equity, diversity, and inclusion (EDI) in the plant sciences. From these broad perspectives, the group developed strategies and identified tactics to facilitate and support EDI within and beyond the plant science community. The workshop leveraged scenario planning and the richness of its participants to develop recommendations aimed at promoting systemic change at the institutional level through the actions of scientific societies, universities, and individuals and through new funding models to support research and training. While these initiatives were formulated specifically for the plant science community, they can also serve as a model to advance EDI in other disciplines. The proposed actions are thematically broad, integrating into discovery, applied and translational science, requiring and embracing multidisciplinarity, and giving voice to previously unheard perspectives. We offer a vision of barrier-free access to participation in science, and a plant science community that reflects the diversity of our rapidly changing nation, and supports and invests in the training and well-being of all its members. The relevance and robustness of our recommendations has been tested by dramatic and global events since the workshop. The time to act upon them is now.

4.
mSystems ; 6(1)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622857

RESUMEN

Microbiome samples are inherently defined by the environment in which they are found. Therefore, data that provide context and enable interpretation of measurements produced from biological samples, often referred to as metadata, are critical. Important contributions have been made in the development of community-driven metadata standards; however, these standards have not been uniformly embraced by the microbiome research community. To understand how these standards are being adopted, or the barriers to adoption, across research domains, institutions, and funding agencies, the National Microbiome Data Collaborative (NMDC) hosted a workshop in October 2019. This report provides a summary of discussions that took place throughout the workshop, as well as outcomes of the working groups initiated at the workshop.

5.
Trends Microbiol ; 28(12): 949-952, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32978058

RESUMEN

Virtual conferences can offer significant benefits but require considerable planning and creativity to be successful. Here we describe the successes and failures of a hybrid in-person/virtual conference model. The COVID-19 epidemic presents the scientific community with an opportunity to pioneer novel models that effectively engage virtual participants to advance conference goals.


Asunto(s)
Comunicación por Videoconferencia/estadística & datos numéricos , COVID-19 , Congresos como Asunto , Conducta Cooperativa , Internet , Modelos Teóricos , Medios de Comunicación Sociales
6.
Plant Direct ; 4(8): e00252, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32904806

RESUMEN

Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020-2030 frames our ability to perform vital and far-reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1-4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant-based medicines, and "green infrastructure." Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a "parts store" that supports tinkering and supports query, prediction, and rapid-response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non-invasive imaging, sensors, and plug-and-play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence-assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems.

7.
Front Microbiol ; 10: 498, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972036

RESUMEN

Carbon amendments are used in agriculture for increasing microbial activity and biomass in the soil. Changes in microbial community composition and function in response to carbon additions to soil have been associated with biological suppression of soilborne diseases. However, the specific selective impacts of carbon amendments on microbial antagonistic populations are not well understood. We investigated the effects of soil carbon amendments on nutrient use profiles, and antibiotic inhibitory and resistance phenotypes of Streptomyces populations from agricultural soils. Soil mesocosms were amended at intervals over 9 months with low or high dose solutions of glucose, fructose, a complex amendment, or water only (non-amendment control). Over 130 Streptomyces isolates were collected from amended and non-amended mesocosm soils, and nutrient utilization profiles on 95 different carbon substrates were determined. A subset of isolates (n = 40) was characterized for their ability to inhibit or resist one another. Carbon amendments resulted in Streptomyces populations with greater niche widths, and increased growth efficiencies as compared with Streptomyces in non-amended soils. Shifts in microbial nutrient use and growth capacities coincided with positive selection for Streptomyces antibiotic inhibitory phenotypes in carbon-amended soils, resulting in populations dominated by phenotypes that combine both antagonistic capacities and a generalist lifestyle. Carbon inputs resulted in populations that on average were more resistant to one another than populations in non-amended soils. Shifts in metabolic capacities and antagonistic activity indicate that carbon additions to soil may selectively enrich Streptomyces antagonistic phenotypes, that are rare under non-nutrient selection, but can inhibit more intensively nutrient competitors, and resist phenotypes with similar functional traits. These results shed light on the potential for using carbon amendments to strategically mediate soil microbial community assembly, and contribute to the establishment of pathogen-suppressive soils in agricultural systems.

8.
Front Mol Biosci ; 6: 151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31993439

RESUMEN

Soil nutrient amendments are recognized for their potential to improve microbial activity and biomass in the soil. However, the specific selective impacts of carbon amendments on indigenous microbiomes and their metabolic functions in agricultural soils remain poorly understood. We investigated the changes in soil chemical characteristics and phenotypes of Streptomyces communities following carbon amendments to soil. Mesocosms were established with soil from two field sites varying in soil organic matter content (low organic matter, LOM; high organic matter, HOM), that were amended at intervals over nine months with low or high dose solutions of glucose, fructose, malic acid, a mixture of these compounds, or water only (non-amended control). Significant shifts in soil chemical characteristics and antibiotic inhibitory capacities of indigenous Streptomyces were observed in response to carbon additions. All high dose carbon amendments consistently increased soil total carbon, while amendments with malic acid decreased soil pH. In LOM soils, higher frequencies of Streptomyces inhibitory phenotypes of the two plant pathogens, Streptomyces scabies and Fusarium oxysporum, were observed in response to soil carbon additions. Additionally, to determine if shifts in Streptomyces functional characteristics correlated with microbiome composition, we investigated whether shifts in functional characteristics of soil Streptomyces correlated with composition of soil bacterial communities, analyzed using 16S rRNA gene sequencing. Regardless of dose, community composition differed significantly among carbon-amended and non-amended soils from both sites. Carbon type and dose had significant effects on bacterial community composition in both LOM and HOM soils. Relationships among microbial community richness (observed species number), diversity, and soil characteristics varied among soils from different sites. These results suggest that manipulation of soil resource availability has the potential to selectively modify the functional capacities of soil microbiomes, and specifically to enhance pathogen inhibitory populations of high value to agricultural systems.

9.
Appl Environ Microbiol ; 81(18): 6345-54, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26150468

RESUMEN

Phytophagous insects can encounter Salmonella enterica on contaminated plant surfaces and transmit externally adhered and internalized bacteria on and among leaves. Excretion of ingested S. enterica by the leafhopper Macrosteles quadrilineatus has been previously reported; however, the sites of persistence of ingested bacteria remain undetermined. Fluorescence microscopy revealed the presence and persistence of S. enterica in various organs of M. quadrilineatus fed an inoculated diet for 12 h and then moved to two consecutive noninoculated diets for a total of 48 h. Ingested S. enterica was predominantly observed in the filter chamber, midgut, and Malpighian tubules of M. quadrilineatus dissected immediately after acquisition and at 24- and 48-h post-acquisition access periods (post-AAPs). Additionally, we examined the potential roles of the Salmonella pathogenicity island 1 (SPI-1) and SPI-2 type III secretion systems (T3SSs) in the persistence and excretion of ingested S. enterica. In competition assays, a prgH mutant lacking a functional SPI-1 T3SS was recovered at significantly lower levels than the WT in insect homogenates at 24 h post-AAP, and complementation with prgH restored S. enterica persistence in M. quadrilineatus. Moreover, expression of prgH inside M. quadrilineatus was observed up to 48 post-AAP. No differences were observed between the WT and an ssaK mutant lacking a functional SPI-2 T3SS in insect homogenates or between the WT and either mutant in insect excretions. This study provides novel insight into the presence and persistence of S. enterica inside M. quadrilineatus and demonstrates that the SPI-1 T3SS influences the persistence of the pathogen in the gut of a potential vector.


Asunto(s)
Proteínas Bacterianas/genética , Hemípteros/microbiología , Interacciones Huésped-Patógeno , Salmonella enterica/genética , Animales , Sistema Digestivo/microbiología , Ingestión de Alimentos , Heces/microbiología , Islas Genómicas/genética , Hemípteros/anatomía & histología , Hemípteros/genética , Microscopía Fluorescente , Salmonella enterica/patogenicidad , Salmonella enterica/ultraestructura , Sistemas de Secreción Tipo III/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...