RESUMEN
With 60% of all primate species now threatened with extinction and many species only persisting in small populations in forest fragments, conservation action is urgently needed. But what type of action? Here we argue that restoration of primate habitat will be an essential component of strategies aimed at conserving primates and preventing the extinctions that may occur before the end of the century and propose that primates can act as flagship species for restoration efforts. To do this we gathered a team of academics from around the world with experience in restoration so that we could provide examples of why primate restoration ecology is needed, outline how primates can act as flagship species for restoration efforts of tropical forest, review what little is known about how primate populations respond to restoration efforts, and make specific recommendations of the next steps needed to make restoration of primate populations successful. We set four priorities: (1) academics must effectively communicate both the value of primates and the need for restoration; (2) more research is needed on how primates contribute to forest restoration; (3) more effort must be put into Masters and PhD level training for tropical country nationals; and finally (4) more emphasis is needed to monitor the responses of regenerating forest and primate populations where restoration efforts are initiated. We are optimistic that populations of many threatened species can recover, and extinctions can be prevented, but only if concerted large-scale efforts are made soon and if these efforts include primate habitat restoration.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Bosques , Primates , Animales , Ecosistema , Restauración y Remediación Ambiental , Extinción BiológicaRESUMEN
Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition.
Asunto(s)
Biodiversidad , Modelos Biológicos , Dispersión de Semillas/fisiología , Plantones/crecimiento & desarrollo , Árboles/fisiología , Clima TropicalRESUMEN
Frugivores are the main seed dispersers in many ecosystems, such that behaviorally driven, nonrandom patterns of seed dispersal are a common process; but patterns are poorly understood. Characterizing these patterns may be essential for understanding spatial organization of fruiting trees and drivers of seed-dispersal limitation in biodiverse forests. To address this, we studied resulting spatial associations between dispersed seeds and adult tree neighbors in a diverse rainforest in Madagascar, using a temporal and phylogenetic approach. Data show that by using fruiting trees as seed-dispersal foci, frugivores bias seed dispersal under conspecific adults and under heterospecific trees that share dispersers and fruiting time with the dispersed species. Frugivore-mediated seed dispersal also resulted in nonrandom phylogenetic associations of dispersed seeds with their nearest adult neighbors, in nine out of the 16 months of our study. However, these nonrandom phylogenetic associations fluctuated unpredictably over time, ranging from clustered to overdispersed. The spatial and phylogenetic template of seed dispersal did not translate to similar patterns of association in adult tree neighborhoods, suggesting the importance of post-dispersal processes in structuring plant communities. Results suggest that frugivore-mediated seed dispersal is important for structuring early stages of plant-plant associations, setting the template for post-dispersal processes that influence ultimate patterns of plant recruitment. Importantly, if biased patterns of dispersal are common in other systems, frugivores may promote tree coexistence in biodiverse forests by limiting the frequency and diversity of heterospecific interactions of seeds they disperse.
Asunto(s)
Herbivoria , Filogenia , Dispersión de Semillas , Semillas , Animales , Ecología , BosquesRESUMEN
Directed dispersal is defined as enhanced dispersal of seeds into suitable microhabitats, resulting in higher recruitment than if seeds were dispersed randomly. While this constitutes one of the main explanations for the adaptive value of frugivore-mediated seed dispersal, the generality of this advantage has received little study, particularly when multiple dispersers are involved. We used probability recruitment models of a long-lived rainforest tree in Madagascar to compare recruitment success under dispersal by multiple frugivores, no dispersal, and random dispersal. Models were parameterized using a three-year recruitment experiment and observational data of dispersal events by three frugivorous lemur species that commonly disperse its seeds. Frugivore-mediated seed dispersal was nonrandom with respect to canopy cover and increased modeled per-seed sapling recruitment fourfold compared to no dispersal. Seeds dispersed by one frugivore, Eulemur rubriventer, had higher modeled recruitment probability than seeds dispersed randomly. However, as a group, our models suggest that seeds dispersed by lemurs would have lower recruitment than if dispersal were random. Results demonstrate the importance of evaluating the contribution of multiple frugivores to plant recruitment for understanding plant population dynamics and the ecological and evolutionary significance of seed dispersal.
Asunto(s)
Cryptocarya , Ecosistema , Herbivoria , Lemur/psicología , Dispersión de Semillas , Animales , Modelos Lineales , Modelos BiológicosRESUMEN
We combined data on gut-passage times, feeding, and movement to explore the patterns of seed dispersal by Eulemur rubriventer, Eulemur rufrifrons, and Varecia variegata editorum lemurs in Ranomafana National Park, Madagascar. These lemur species deposited less than half of their consumed seeds >100 m away from conspecific trees (40-50%). Long-distance dispersal (>500 m) was rare and average dispersal distances were short relative to those reported of similar-sized haplorrhine primates. The three lemur species showed no significant differences in mean seed-dispersal distances. However, they differed in the shape of their frequency distributions of seed-dispersal distances as a result of differences in how they moved through their habitats. The short distances of seed dispersal we observed and the depauperate frugivorous fauna in Madagascar suggest seed-dispersal may be more limited than in other tropical forests with important implications for plant-community dynamics, biodiversity maintenance, and restoration efforts in Madagascar.
Asunto(s)
Cadena Alimentaria , Lemuridae/fisiología , Movimiento , Dispersión de Semillas , Árboles/fisiología , Animales , MadagascarRESUMEN
Understanding what traits determine the extinction risk of species has been a long-standing challenge. Natural populations increasingly experience reductions in habitat and population size concurrent with increasing novel environmental variation owing to anthropogenic disturbance and climate change. Recent studies show that a species risk of decline towards extinction is often non-random across species with different life histories. We propose that species with life histories in which all stage-specific vital rates are more evenly important to population growth rate may be less likely to decline towards extinction under these pressures. To test our prediction, we modelled declines in population growth rates under simulated stochastic disturbance to the vital rates of 105 species taken from the literature. Populations with more equally important vital rates, determined using elasticity analysis, declined more slowly across a gradient of increasing simulated environmental variation. Furthermore, higher evenness of elasticity was significantly correlated with a reduced chance of listing as Threatened on the International Union for Conservation of Nature Red List. The relative importance of life-history traits of diverse species can help us infer how natural assemblages will be affected by novel anthropogenic and climatic disturbances.
Asunto(s)
Ecosistema , Extinción Biológica , Estadios del Ciclo de Vida , Crecimiento Demográfico , Procesos Estocásticos , Animales , Cambio Climático , Conservación de los Recursos Naturales , Predicción , Especificidad de la EspecieRESUMEN
Although the food web is one of the most fundamental and oldest concepts in ecology, elucidating the strategies and structures by which natural communities of species persist remains a challenge to empirical and theoretical ecologists. We show that simple regulatory feedbacks between autotrophs and their environment when embedded within complex and realistic food-web models enhance biodiversity. The food webs are generated through the niche-model algorithm and coupled with predator-prey dynamics, with and without environmental feedbacks at the autotroph level. With high probability and especially at lower, more realistic connectance levels, regulatory environmental feedbacks result in fewer species extinctions, that is, in increased species persistence. These same feedback couplings, however, also sensitize food webs to environmental stresses leading to abrupt collapses in biodiversity with increased forcing. Feedback interactions between species and their material environments anchor food-web persistence, adding another dimension to biodiversity conservation. We suggest that the regulatory features of two natural systems, deep-sea tubeworms with their microbial consortia and a soil ecosystem manifesting adaptive homeostatic changes, can be embedded within niche-model food-web dynamics.
Asunto(s)
Biodiversidad , Cadena Alimentaria , Adaptación Biológica , Algoritmos , Animales , Procesos Autotróficos , Biomasa , Extinción Biológica , Retroalimentación , Modelos Biológicos , Dinámica Poblacional , Conducta Predatoria , TemperaturaRESUMEN
Scalar population models, commonly referred to as count-based models, are based on time-series data of population sizes and may be useful for screening-level ecological risk assessments when data for more complex models are not available. Appropriate use of such models for management purposes, however, requires understanding inherent biases that may exist in these models. Through a series of simulations, which compared predictions of risk of decline of scalar and matrix-based models, we examined whether discrepancies may arise from different dynamics displayed due to age structure and generation time. We also examined scalar and matrix-based population models of 18 real populations for potential patterns of bias in population viability estimates. In the simulation study, precautionary bias (i.e., overestimating risks of decline) of scalar models increased as a function of generation time. Models of real populations showed poor fit between scalar and matrix-based models, with scalar models predicting significantly higher risks of decline on average. The strength of this bias was not correlated with generation time, suggesting that additional sources of bias may be masking this relationship. Scalar models can be useful for screening-level assessments, which should in general be precautionary, but the potential shortfalls of these models should be considered before using them as a basis for management decisions.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Modelos Biológicos , Envejecimiento , Animales , Aves/fisiología , Simulación por Computador , Modelos Estadísticos , Dinámica PoblacionalRESUMEN
The Herpestidae are small terrestrial carnivores comprising 18 African and Asian genera, currently split into two subfamilies, the Herpestinae and the Galidiinae. The aim of this work was to resolve intra-familial relationships and to test the origin of sociality in the group. For this purpose we analysed sequences of the complete cytochrome b gene for 18 species of Herpestidae. The results showed that the mongooses were split into three clades: (1) the Malagasy taxa (Galidiinae and Cryptoprocta), (2) the true social mongooses and (3) the solitary mongooses, each group being also supported by morphological and chromosomal data. Our results suggested unexpected phylogenetic relationships: (1) the genus Cynictis is included in the solitary mongoose clade, (2) the genera Liberiictis and Mungos are sister-group, and (3) the genus Herpestes is polyphyletic. We examined the evolution of the sociality in mongooses by combining behavioural traits with the cytochrome b data. Some of the behavioural traits provided good synapomorphies for characterizing the social species clade, showing the potential benefit of using such characters in phylogeny. The mapping of ecological and behavioural features resulted in hypothesizing solitary behavior and life in forest as the conditions at the base of the mongoose clade.