Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(7): 499, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997255

RESUMEN

Dynein complexes are large, multi-unit assemblies involved in many biological processes via their critical roles in protein transport and axoneme motility. Using next-generation sequencing of infertile men presenting with low or no sperm in their ejaculates, we identified damaging variants in the dynein-related gene AXDND1. We thus hypothesised that AXDND1 is a critical regulator of male fertility. To test this hypothesis, we produced a knockout mouse model. Axdnd1-/- males were sterile at all ages but presented with an evolving testis phenotype wherein they could undergo one round of histologically replete spermatogenesis followed by a rapid depletion of the seminiferous epithelium. Marker experiments identified a role for AXDND1 in maintaining the balance between differentiation-committed and self-renewing spermatogonial populations, resulting in disproportionate production of differentiating cells in the absence of AXDND1 and increased sperm production during initial spermatogenic waves. Moreover, long-term spermatogonial maintenance in the Axdnd1 knockout was compromised, ultimately leading to catastrophic germ cell loss, destruction of blood-testis barrier integrity and immune cell infiltration. In addition, sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively these data identify AXDND1 as an atypical dynein complex-related protein with a role in protein/vesicle transport of relevance to spermatogonial function and sperm tail formation in mice and humans. This study underscores the importance of studying the consequences of gene loss-of-function on both the establishment and maintenance of male fertility.


Asunto(s)
Ratones Noqueados , Cola del Espermatozoide , Espermatogénesis , Espermatogonias , Animales , Humanos , Masculino , Ratones , Diferenciación Celular , Dineínas/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Ratones Endogámicos C57BL , Cola del Espermatozoide/metabolismo , Espermatogénesis/genética , Espermatogonias/metabolismo , Testículo/metabolismo , Dineínas Axonemales/genética , Dineínas Axonemales/metabolismo
2.
Reprod Fertil Dev ; 362024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38346692

RESUMEN

In 2022, the Society for Reproductive Biology came together in Christchurch New Zealand (NZ), for its first face-to-face meeting since the global COVID-19 pandemic. The meeting showcased recent advancements in reproductive research across a diverse range of themes relevant to human health and fertility, exotic species conservation, and agricultural breeding practices. Here, we highlight the key advances presented across the main themes of the meeting, including advances in addressing opportunities and challenges in reproductive health related to First Nations people in Australia and NZ; increasing conservation success of exotic species, including ethical management of invasive species; improvements in our understanding of developmental biology, specifically seminal fluid signalling, ovarian development and effects of environmental impacts such as endocrine-disrupting chemicals; and leveraging scientific breakthroughs in reproductive engineering to drive solutions for fertility, including in assisted reproductive technologies in humans and agricultural industries, and for regenerative medicine.


Asunto(s)
Pandemias , Reproducción , Humanos , Nueva Zelanda , Australia , Biología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...