RESUMEN
The study of microorganism interactions is important for understanding the organization and functioning of microbial consortia. Additionally, the interaction between yeast and bacteria is of interest in the field of health and nutrition area for the development of probiotics. To investigate these microbial interactions at the cellular and molecular levels, a simple, reliable, and quantitative method is proposed. We demonstrated that flow cytometry enables the measurement of interactions at a single-cell level by detecting and counting yeast cells with bound fluorescent bacteria. Imaging flow cytometry revealed that the number of bacteria attached to yeast followed a Gaussian distribution whose maximum reached 14 bacterial cells using a clinical Escherichia coli strain E22 and the laboratory yeast strain BY4741. We found that the dynamics of adhesion resemble a Langmuir adsorption model, albeit it is a rapid and almost irreversible process. This adhesion is dependent on the mannose-specific type 1 fimbriae, as E. coli mutants lacking these appendages no longer adhere to yeast. However, this type 1 fimbriae-dependent adhesion could involve additional yeast cell wall factors, since the interaction between bacteria and yeast mutants with altered mannan content remained comparable to that of wild-type yeast. In summary, flow cytometry is an appropriate method for studying bacteria-yeast adhesion, as well as for the high-throughput screening of candidate molecules likely to promote or counteract this interaction.
Asunto(s)
Adhesión Bacteriana , Escherichia coli , Citometría de Flujo , Saccharomyces cerevisiae , Citometría de Flujo/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMEN
T-cell cytotoxic function relies on the cooperation between the highly specific but poorly adhesive T-cell receptor (TCR) and the integrin LFA-1. How LFA-1-mediated adhesion may scale with TCR stimulation strength is ill-defined. Here, we show that LFA-1 conformation activation scales with TCR stimulation to calibrate human T-cell cytotoxicity. Super-resolution microscopy analysis reveals that >1000 LFA-1 nanoclusters provide a discretized platform at the immunological synapse to translate TCR engagement and density of the LFA-1 ligand ICAM-1 into graded adhesion. Indeed, the number of high-affinity conformation LFA-1 nanoclusters increases as a function of TCR triggering strength. Blockade of LFA-1 conformational activation impairs adhesion to target cells and killing. However, it occurs at a lower TCR stimulation threshold than lytic granule exocytosis implying that it licenses, rather than directly controls, the killing decision. We conclude that the organization of LFA-1 into nanoclusters provides a calibrated system to adjust T-cell killing to the antigen stimulation strength.
Asunto(s)
Antineoplásicos , Linfocitos T , Humanos , Gránulos Citoplasmáticos , Antígeno-1 Asociado a Función de Linfocito , Receptores de Antígenos de Linfocitos T , Antígeno CD11a/metabolismoRESUMEN
The ability to proliferate is a common feature of most T-cell populations. However, proliferation follows different cell-cycle dynamics and is coupled to different functional outcomes according to T-cell subsets. Whether the mitotic machineries supporting these qualitatively distinct proliferative responses are identical remains unknown. Here, we show that disruption of the microtubule-associated protein LIS1 in mouse models leads to proliferative defects associated with a blockade of T-cell development after ß-selection and of peripheral CD4+ T-cell expansion after antigen priming. In contrast, cell divisions in CD8+ T cells occurred independently of LIS1 following T-cell antigen receptor stimulation, although LIS1 was required for proliferation elicited by pharmacological activation. In thymocytes and CD4+ T cells, LIS1 deficiency did not affect signaling events leading to activation but led to an interruption of proliferation after the initial round of division and to p53-induced cell death. Proliferative defects resulted from a mitotic failure, characterized by the presence of extra-centrosomes and the formation of multipolar spindles, causing abnormal chromosomes congression during metaphase and separation during telophase. LIS1 was required to stabilize dynein/dynactin complexes, which promote chromosome attachment to mitotic spindles and ensure centrosome integrity. Together, these results suggest that proliferative responses are supported by distinct mitotic machineries across T-cell subsets.
Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , Proteínas Asociadas a Microtúbulos , Linfocitos T , Animales , Ratones , Linaje de la Célula , Centrosoma/metabolismo , Segregación Cromosómica , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Huso Acromático/metabolismoRESUMEN
Escherichia coli strains are responsible for a majority of human extra-intestinal infections, resulting in huge direct medical and social costs. We had previously shown that HlyF encoded by a large virulence plasmid harbored by pathogenic E. coli is not a hemolysin but a cytoplasmic enzyme leading to the overproduction of outer membrane vesicles (OMVs). Here, we showed that these specific OMVs inhibit the macroautophagic/autophagic flux by impairing the autophagosome-lysosome fusion, thus preventing the formation of acidic autolysosomes and autophagosome clearance. Furthermore, HlyF-associated OMVs were more prone to activate the non-canonical inflammasome pathway. Because autophagy and inflammation are crucial in the host's response to infection especially during sepsis, our findings revealed an unsuspected role of OMVs in the crosstalk between bacteria and their host, highlighting the fact that these extracellular vesicles have exacerbated pathogenic properties.Abbreviations: AIEC: adherent-invasive E. coliBDI: bright detail intensityBMDM: bone marrow-derived macrophagesCASP: caspaseE. coli: Escherichia coliEHEC: enterohemorrhagic E. coliExPEC: extra-intestinal pathogenic E. coliGSDMD: gasdermin DGFP: green fluorescent proteinHBSS: Hanks' balanced salt solutionHlyF: hemolysin FIL1B/IL-1B: interleukin 1 betaISX: ImageStreamX systemLPS: lipopolysaccharideMut: mutatedOMV: outer membrane vesicleRFP: red fluorescent proteinTEM: transmission electron microscopyWT: wild-type.
Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/metabolismo , Inflamasomas/metabolismo , Proteínas Hemolisinas , Autofagia , Infecciones por Escherichia coli/metabolismoRESUMEN
Cytotoxic immune cells are endowed with a high degree of heterogeneity in their lytic function, but how this heterogeneity is generated is still an open question. We therefore investigated if human CD8+ T cells could segregate their lytic components during telophase, using imaging flow cytometry, confocal microscopy, and live-cell imaging. We show that CD107a+-intracellular vesicles, perforin, and granzyme B unevenly segregate in a constant fraction of telophasic cells during each division round. Mathematical modeling posits that unequal lytic molecule inheritance by daughter cells results from the random distribution of lytic granules on the two sides of the cleavage furrow. Finally, we establish that the level of lytic compartment in individual cytotoxic T lymphocyte (CTL) dictates CTL killing capacity.