Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 380(6645): eadg3748, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167391

RESUMEN

Jensen et al. (1) question evidence presented of a chambered heart within placoderms, citing its small size and apparently ventral atrium. However, they fail to note the belly-up orientation of the placoderm within one nodule, and the variability of heart morphology within extant taxa. Thus, we remain confident in our interpretation of the mineralized organ as the heart.


Asunto(s)
Evolución Biológica , Fósiles , Corazón , Preservación Biológica , Animales , Peces/fisiología
2.
PLoS One ; 18(2): e0280208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36821588

RESUMEN

Material of the antiarch placoderm Bothriolepis from the middle Givetian of the Valentia Slate Formation in Iveragh Peninsula, Ireland, is described and attributed to a new species, B. dairbhrensis sp. nov. A revision of the genus Bothriolepis is proposed, and its taxonomic content and previous phylogenetic analyses are reviewed, as well as the validity of morphologic characteristics considered important for the establishment of the genus, such as the shape of the preorbital recess of the neurocranium. A series of computerised phylogenetic analyses was performed, which reveals that our new species is the sister taxon to the Frasnian Scottish form B. gigantea. New phylogenetic and biogeographic analyses of the genus Bothriolepis together with comparisons between faunal assemblages reveal a first northward dispersal wave from Gondwana to Euramerica at the latest in the mid Givetian. Other Euramerican species of Bothriolepis seem to belong to later dispersal waves from Gondwana, non-excluding southward waves from Euramerica. Questions remain open such as the taxonomic validity and stratigraphic constraints for the most ancient forms of Bothriolepis in China, and around the highly speciose nature of the genus.


Asunto(s)
Evolución Biológica , Cráneo , Animales , Filogenia , Irlanda , China
3.
Science ; 377(6612): 1311-1314, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36107996

RESUMEN

The origin and early diversification of jawed vertebrates involved major changes to skeletal and soft anatomy. Skeletal transformations can be examined directly by studying fossil stem gnathostomes; however, preservation of soft anatomy is rare. We describe the only known example of a three-dimensionally mineralized heart, thick-walled stomach, and bilobed liver from arthrodire placoderms, stem gnathostomes from the Late Devonian Gogo Formation in Western Australia. The application of synchrotron and neutron microtomography to this material shows evidence of a flat S-shaped heart, which is well separated from the liver and other abdominal organs, and the absence of lungs. Arthrodires thus show the earliest phylogenetic evidence for repositioning of the gnathostome heart associated with the evolution of the complex neck region in jawed vertebrates.


Asunto(s)
Evolución Biológica , Bagres , Fósiles , Animales , Bagres/anatomía & histología , Bagres/clasificación , Maxilares/anatomía & histología , Filogenia , Australia Occidental
4.
PLoS One ; 12(2): e0171241, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28170434

RESUMEN

Placoderms are considered as the first jawed vertebrates and constitute a paraphyletic group in the stem-gnathostome grade. The acanthothoracid placoderms are among the phylogenetically most basal and morphologically primitive gnathostomes, but their neurocranial anatomy is poorly understood. Here we present a near-complete three-dimensional skull of Romundina stellina, a small Early Devonian acanthothoracid from the Canadian Arctic Archipelago, scanned with propagation phase contrast microtomography at a 7.46 µm isotropic voxel size at the European Synchrotron Radiation Facility, Grenoble, France. This is the first model of an early gnathostome skull produced using this technique, and as such represents a major advance in objectivity compared to past descriptions of placoderm neurocrania on the basis of grinding series. Despite some loss of material along an oblique crack, most of the internal structures are remarkably preserved, and most of the missing structures can be reconstructed by symmetry. This virtual approach offers the possibility to connect with certainty all the external foramina to the blood and nerve canals and the central structures, and thus identify accurate homologies without destroying the specimen. The high level of detail enables description of the main arterial, venous and nerve canals of the skull, and other perichondrally ossified endocranial structures such as the palatoquadrate articulations, the endocranial cavity and the inner ear cavities. The braincase morphology appears less extreme than that of Brindabellaspis, and is in some respects more reminiscent of a basal arthrodire such as Kujdanowiaspis.


Asunto(s)
Maxilares/anatomía & histología , Cráneo/anatomía & histología , Vertebrados/anatomía & histología , Animales , Fósiles , Imagenología Tridimensional , Modelos Anatómicos , Paleontología , Vertebrados/clasificación
5.
PLoS One ; 11(8): e0161540, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27552196

RESUMEN

The placoderm fauna of the upper Famennian tetrapod-bearing locality of Strud, Belgium, includes the antiarch Grossilepis rikiki, the arthrodire groenlandaspidid Turrisaspis strudensis and the phyllolepidid Phyllolepis undulata. Based on morphological and morphometric evidence, the placoderm specimens from Strud are predominantly recognised as immature specimens and this locality as representing a placoderm nursery. The Strud depositional environment corresponds to a channel in an alluvial plain, and the presence of a nursery in such environment could have provided nutrients and protection to the placoderm offspring. This represents one of the earliest pieces of evidence for this sort of habitat partitioning in vertebrate history, with adults living more distantly from the nursery and using the nursery only to spawn or give live birth.


Asunto(s)
Evolución Biológica , Ecosistema , Peces , Fósiles , Animales , Bélgica
6.
Nature ; 507(7493): 500-3, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24522530

RESUMEN

Extant vertebrates form two clades, the jawless Cyclostomata (lampreys and hagfishes) and the jawed Gnathostomata (all other vertebrates), with contrasting facial architectures. These arise during development from just a few key differences in the growth patterns of the cranial primordia: notably, the nasal sacs and hypophysis originate from a single placode in cyclostomes but from separate placodes in gnathostomes, and infraoptic ectomesenchyme migrates forward either side of the single placode in cyclostomes but between the placodes in gnathostomes. Fossil stem gnathostomes preserve cranial anatomies rich in landmarks that provide proxies for developmental processes and allow the transition from jawless to jawed vertebrates to be broken down into evolutionary steps. Here we use propagation phase contrast synchrotron microtomography to image the cranial anatomy of the primitive placoderm (jawed stem gnathostome) Romundina, and show that it combines jawed vertebrate architecture with cranial and cerebral proportions resembling those of cyclostomes and the galeaspid (jawless stem gnathostome) Shuyu. This combination seems to be primitive for jawed vertebrates, and suggests a decoupling between ectomesenchymal growth trajectory, ectomesenchymal proliferation, and cerebral shape change during the origin of gnathostomes.


Asunto(s)
Evolución Biológica , Peces/anatomía & histología , Fósiles , Maxilares , Animales , Encéfalo/anatomía & histología , Cara/anatomía & histología , Peces/clasificación , Maxilares/anatomía & histología , Lampreas/anatomía & histología , Cresta Neural/anatomía & histología , Filogenia
7.
Science ; 341(6142): 160-4, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23765280

RESUMEN

The transition from jawless to jawed vertebrates (gnathostomes) resulted in the reconfiguration of the muscles and skeleton of the head, including the creation of a separate shoulder girdle with distinct neck muscles. We describe here the only known examples of preserved musculature from placoderms (extinct armored fishes), the phylogenetically most basal jawed vertebrates. Placoderms possess a regionalized muscular anatomy that differs radically from the musculature of extant sharks, which is often viewed as primitive for gnathostomes. The placoderm data suggest that neck musculature evolved together with a dermal joint between skull and shoulder girdle, not as part of a broadly flexible neck as in sharks, and that transverse abdominal muscles are an innovation of gnathostomes rather than of tetrapods.


Asunto(s)
Evolución Biológica , Peces/anatomía & histología , Peces/genética , Fósiles , Desarrollo Maxilofacial/genética , Músculos del Cuello/anatomía & histología , Animales , Peces/clasificación , Filogenia
8.
PLoS One ; 8(2): e56992, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468901

RESUMEN

BACKGROUND: Firm attachments binding muscles to skeleton are crucial mechanical components of the vertebrate body. These attachments (entheses) are complex three-dimensional structures, containing distinctive arrangements of cells and fibre systems embedded in the bone, which can be modified during ontogeny. Until recently it has only been possible to obtain 2D surface and thin section images of entheses, leaving their 3D histology largely unstudied except by extrapolation from 2D data. Entheses are frequently preserved in fossil bones, but sectioning is inappropriate for rare or unique fossil material. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the first non-destructive 3D investigation, by propagation phase contrast synchrotron microtomography (PPC-SRµCT), of enthesis histology in extant and fossil vertebrates. We are able to identify entheses in the humerus of the salamander Desmognathus from the organization of bone-cell lacunae and extrinsic fibres. Statistical analysis of the lacunae differentiates types of attachments, and the orientation of the fibres, reflect the approximate alignment of the muscle. Similar histological structures, including ontogenetically related pattern changes, are perfectly preserved in two 380 million year old fossil vertebrates, the placoderm Compagopiscis croucheri and the sarcopterygian fish Eusthenopteron foordi. CONCLUSIONS/SIGNIFICANCE: We are able to determine the position of entheses in fossil vertebrates, the approximate orientation of the attached muscles, and aspects of their ontogenetic histories, from PPC-SRµCT data. Sub-micron microtomography thus provides a powerful tool for studying the structure, development, evolution and palaeobiology of muscle attachments.


Asunto(s)
Huesos/anatomía & histología , Fósiles , Imagenología Tridimensional , Sincrotrones , Tomografía por Rayos X , Animales , Huesos/citología , Peces , Ratones , Músculo Esquelético , Vertebrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...