Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(6): 112659, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37327110

RESUMEN

p57Kip2 is a cyclin/CDK inhibitor and a negative regulator of cell proliferation. Here, we report that p57 regulates intestinal stem cell (ISC) fate and proliferation in a CDK-independent manner during intestinal development. In the absence of p57, intestinal crypts exhibit an increased proliferation and an amplification of transit-amplifying cells and of Hopx+ ISCs, which are no longer quiescent, while Lgr5+ ISCs are unaffected. RNA sequencing (RNA-seq) analyses of Hopx+ ISCs show major gene expression changes in the absence of p57. We found that p57 binds to and inhibits the activity of Ascl2, a transcription factor critical for ISC specification and maintenance, by participating in the recruitment of a corepressor complex to Ascl2 target gene promoters. Thus, our data suggest that, during intestinal development, p57 plays a key role in maintaining Hopx+ ISC quiescence and repressing the ISC phenotype outside of the crypt bottom by inhibiting the transcription factor Ascl2 in a CDK-independent manner.


Asunto(s)
Proteínas Co-Represoras , Intestinos , Células Madre , Diferenciación Celular , Proliferación Celular , Intestinos/metabolismo , Células Madre/fisiología , Factores de Transcripción , Proteínas Co-Represoras/metabolismo
2.
J Pathol ; 239(3): 250-61, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27015986

RESUMEN

CDKN1C encodes the cyclin-CDK inhibitor p57(Kip2) (p57), a negative regulator of the cell cycle and putative tumour suppressor. Genetic and epigenetic alterations causing loss of p57 function are the most frequent cause of Beckwith-Wiedemann syndrome (BWS), a genetic disorder characterized by multiple developmental anomalies and increased susceptibility to tumour development during childhood. So far, BWS development has been attributed entirely to the deregulation of proliferation caused by loss of p57-mediated CDK inhibition. However, a fraction of BWS patients have point mutations in CDKN1C located outside of the CDK inhibitory region, suggesting the involvement of other parts of the protein in the disease. To test this possibility, we generated knock-in mice deficient for p57-mediated cyclin-CDK inhibition (p57(CK) (-) ), the only clearly defined function of p57. Comparative analysis of p57(CK) (-) and p57(KO) mice provided clear evidence for CDK-independent roles of p57 and revealed that BWS is not caused entirely by CDK deregulation, as several features of BWS are caused by the loss of CDK-independent roles of p57. Thus, while the genetic origin of BWS is well understood, our results underscore that the underlying molecular mechanisms remain largely unclear. To probe these mechanisms further, we determined the p57 interactome. Several partners identified are involved in genetic disorders with features resembling those caused by CDKN1C mutation, suggesting that they could be involved in BWS pathogenesis and revealing a possible connection between seemingly distinct syndromes. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Regulación de la Expresión Génica/genética , Proteínas Supresoras de Tumor/genética , Secuencia de Aminoácidos , Animales , Síndrome de Beckwith-Wiedemann/patología , Ciclo Celular , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Fenotipo , Alineación de Secuencia , Proteínas Supresoras de Tumor/metabolismo
3.
Oncotarget ; 6(34): 35880-92, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26416424

RESUMEN

p27Kip1 (p27) is a negative regulator of proliferation and a tumor suppressor via the inhibition of cyclin-CDK activity in the nucleus. p27 is also involved in the regulation of other cellular processes, including transcription by acting as a transcriptional co-repressor. Loss of p27 expression is frequently observed in pancreatic adenocarcinomas in human and is associated with decreased patient survival. Similarly, in a mouse model of K-Ras-driven pancreatic cancer, loss of p27 accelerates tumor development and shortens survival, suggesting an important role for p27 in pancreatic tumorigenesis. Here, we sought to determine how p27 might contribute to early events leading to tumor development in the pancreas. We found that K-Ras activation in the pancreas causes p27 mislocalization at pre-neoplastic stages. Moreover, loss of p27 or expression of a mutant p27 that does not bind cyclin-CDKs causes the mislocalization of several acinar polarity markers associated with metaplasia and induces the nuclear expression of Sox9 and Pdx1 two transcription factors involved in acinar-to-ductal metaplasia. Finally, we found that p27 directly represses transcription of Sox9, but not that of Pdx1. Thus, our results suggest that K-Ras activation, the earliest known event in pancreatic carcinogenesis, may cause loss of nuclear p27 expression which results in derepression of Sox9, triggering reprogramming of acinar cells and metaplasia.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/deficiencia , Páncreas/metabolismo , Páncreas/patología , Factor de Transcripción SOX9/biosíntesis , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HEK293 , Células HeLa , Humanos , Metaplasia , Ratones , Ratones Noqueados , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal
4.
Blood ; 124(22): 3260-73, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25293778

RESUMEN

Recent studies have revealed that p27, a nuclear cyclin-dependent kinase (Cdk) inhibitor and tumor suppressor, can acquire oncogenic activities upon mislocalization to the cytoplasm. To understand how these antagonistic activities influence oncogenesis, we dissected the nuclear and cytoplasmic functions of p27 in chronic myeloid leukemia (CML), a well-characterized malignancy caused by the BCR-ABL1 tyrosine kinase. p27 is predominantly cytoplasmic in CML and nuclear in normal cells. BCR-ABL1 regulates nuclear and cytoplasmic p27 abundance by kinase-dependent and -independent mechanisms, respectively. p27 knockdown in CML cell lines with predominantly cytoplasmic p27 induces apoptosis, consistent with a leukemogenic role of cytoplasmic p27. Accordingly, a p27 mutant (p27(CK-)) devoid of Cdk inhibitory nuclear functions enhances leukemogenesis in a murine CML model compared with complete absence of p27. In contrast, p27 mutations that enhance its stability (p27(T187A)) or nuclear retention (p27(S10A)) attenuate leukemogenesis over wild-type p27, validating the tumor-suppressor function of nuclear p27 in CML. We conclude that BCR-ABL1 kinase-dependent and -independent mechanisms convert p27 from a nuclear tumor suppressor to a cytoplasmic oncogene. These findings suggest that cytoplasmic mislocalization of p27 despite BCR-ABL1 inhibition by tyrosine kinase inhibitors may contribute to drug resistance, and effective therapeutic strategies to stabilize nuclear p27 must also prevent cytoplasmic mislocalization.


Asunto(s)
Transformación Celular Neoplásica/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Citoplasma/metabolismo , Proteínas de Fusión bcr-abl/fisiología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Animales , Células Cultivadas , Genes Supresores de Tumor , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Oncogénicas/metabolismo , Transporte de Proteínas/genética
5.
J Mol Cell Cardiol ; 51(5): 665-73, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21810427

RESUMEN

Protein kinase C (PKC) is a family of 10 serine/threonine kinases divided into 3 subfamilies, classical, novel and atypical classes. Two PKC isozymes of the novel group, PKCε and PKCδ, have different and sometimes opposite effects. PKCε stimulates cell growth and differentiation while PKCδ is apoptotic. In the heart, they are among the most expressed PKC isozymes and they are opposed in the preconditioning process with a positive role of PKCε and an inhibiting role of PKCδ. The goal of this review is to analyze the structural differences of these 2 enzymes that may explain their different behaviors and properties.


Asunto(s)
Hipertrofia Ventricular Izquierda/metabolismo , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Proteína Quinasa C-delta , Proteína Quinasa C-epsilon , Transducción de Señal , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Cobayas , Humanos , Hipertrofia Ventricular Izquierda/patología , Isoenzimas/química , Isoenzimas/metabolismo , Ratones , Isquemia Miocárdica/patología , Miocardio/patología , Especificidad de Órganos , Unión Proteica , Proteína Quinasa C-alfa/química , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-delta/química , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/química , Proteína Quinasa C-epsilon/metabolismo , Estructura Terciaria de Proteína , Conejos , Ratas , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología
6.
Cell Signal ; 22(10): 1459-68, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20576488

RESUMEN

Epac (Exchange protein directly activated by cAMP) is a sensor for cAMP and represents a novel mechanism for governing cAMP signalling. Epac is a guanine nucleotide exchange factor (GEF) for the Ras family of small GTPases, Rap. Previous studies demonstrated that, in response to a prolonged beta-adrenergic stimulation Epac induced cardiac myocyte hypertrophy. The aim of our study was to further characterize Epac downstream effectors involved in cardiac myocyte growth. Here, we found that Epac led to the activation of the small G protein H-Ras in primary neonatal cardiac myocytes. A Rap GTPase activating protein (RapGAP) partially inhibited Epac-induced H-Ras activation. Interestingly, we found that H-Ras activation involved the GEF domain of Epac. However, Epac did not directly induce exchange activity on this small GTPase protein. Instead, the effect of Epac on H-Ras activation was dependent on a signalling cascade involving phospholipase C (PLC)/inositol 1,3,5 triphosphate receptor (IP3R) and an increase intracellular calcium. In addition, we found that Epac activation induced histone deacetylase type 4 (HDAC4) translocation. Whereas HDAC5 alone was unresponsive to Epac, it became responsive to Epac in the presence of HDAC4 in COS cells. Consistent with its effect on HDAC cytoplasmic shuttle, Epac activation also increased the prohypertrophic transcription factor MEF2 in a CaMKII dependent manner in primary cardiac myocytes. Thus, our data show that Epac activates a prohypertrophic signalling pathway which involves PLC, H-Ras, CaMKII and HDAC nuclear export.


Asunto(s)
Núcleo Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Histona Desacetilasas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Animales , Calcio/metabolismo , Cardiomegalia/metabolismo , Dominio Catalítico , Células Cultivadas , Factores de Intercambio de Guanina Nucleótido/química , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Factores de Transcripción MEF2 , Miocitos Cardíacos/enzimología , Factores Reguladores Miogénicos/metabolismo , Factores de Transcripción NFATC/metabolismo , Ratas , Fosfolipasas de Tipo C/metabolismo
7.
Pflugers Arch ; 460(4): 731-41, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20585956

RESUMEN

It has been recently shown that beta-adrenergic receptors are able to activate phospholipase C via the cyclic adenosine monophosphate-binding protein Epac. This new interconnection may participate in isoproterenol (Iso)-induced preconditioning. We evaluated here whether Epac could induce PKCepsilon activation and could play a role in ischemic preconditioning through the phosphorylation of connexin43 (Cx43) and changes in gap junctional intercellular communication (GJIC). In cultured rat neonatal cardiomyocytes, we showed that in response to Iso and 8-CPT, a specific Epac activator, PKCepsilon content was increased in particulate fractions of cell lysates independently of protein kinase A (PKA). This was associated with an increased Cx43 phosphorylation. Both Iso and 8-CPT induced an increase in GJIC that was blocked by the PKC inhibitor bisindolylmaleimide. Interestingly, inhibition of PKA partly suppressed both Iso-induced increases in Cx43 phosphorylation and in GJIC. The same PKCepsilon-dependent Cx43 phosphorylation by beta-adrenergic stimulation via Epac was found in adult rat hearts. However, in contrast with Iso that induced a preconditioning effect, perfusion of isolated hearts with 8-CPT prior to ischemia failed to improve the post-ischemia functional recovery. In conclusion, Epac stimulation induces PKCepsilon activation and Cx43 phosphorylation with an increase in GJIC, but Epac activation does not induce preconditioning to ischemia in contrast with beta-adrenergic stimulation.


Asunto(s)
Conexina 43/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Precondicionamiento Isquémico Miocárdico , Miocitos Cardíacos/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Western Blotting , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/fisiología , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Factores de Intercambio de Guanina Nucleótido/efectos de los fármacos , Isoproterenol/farmacología , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Cultivo de Órganos , Fosforilación , Proteína Quinasa C-epsilon/metabolismo , Ratas , Teofilina/análogos & derivados , Teofilina/farmacología
8.
Int J Biochem Cell Biol ; 41(5): 1173-81, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19015044

RESUMEN

Myocardial stretch is a major determinant of ventricular hypertrophy, a physiological adaptational process that can be detrimental, leading to heart failure. Therapies aimed to limit the development of cardiac hypertrophy are thus currently evaluated. Among possible targets, the small G protein Ras and the epidermal growth factor receptor (EGFR) have been shown to be involved during stretch but their precise role in the activation of the major actors of hypertrophy, the mitogen activated protein kinases (MAPK) ERK and JNK is not well known. Our goal was thus was to evaluate precisely the activation pathways of ERK and JNK during stretch, with an emphasis on the role of the EGFR. For this purpose, neonatal rat cardiomyocytes in culture were stretched for different time durations. As measured by Western blot of their phosphorylated forms, ERK and JNK were activated by stretch. Ras inhibition decreased basal ERK phosphorylation but had no effect on stretch-induced ERK activation. Under basal conditions, EGFR activated ERK in a classical Ras-dependent manner. Upon stretch, EGFR transactivation activated ERK through both Ras-dependent and Ras-independent pathways. Interestingly, we also show that the Akt pathway participates in stretch-induced ERK activation with an involvement of EGFR. Unlike ERK, JNK activation is independent of either EGFR or PI3 kinase but dependent on other tyrosine kinases. In conclusion these data show different Ras-dependent and Ras-independent pathways in basal conditions and during stretch with a previously unrecognized role of Akt in the activation of ERK.


Asunto(s)
Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas ras/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Activación Enzimática , Genes ras , Sistema de Señalización de MAP Quinasas , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Transfección , Proteínas ras/antagonistas & inhibidores
9.
J Mol Cell Cardiol ; 44(4): 623-32, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18339399

RESUMEN

Small GTP-binding proteins (small G proteins) act as GDP-GTP-regulated molecular switches and are activated by guanine nucleotide exchange factors (GEFs) in response to diverse extracellular stimuli. During this last decade, numerous molecular and cellular studies, as well as genetically-modified animal models, have highlighted the role of small G proteins in the regulation of cardiac hypertrophy. The growing interest in small G protein signalling comes from the fact that chronic hypertrophic response is considered maladaptive and predisposes individuals to heart failure. Although some of the hypertrophic signalling pathways involving small G proteins have now been identified, a central question deals with the identity of the GEFs that modulate small G protein activation in the context of cardiac hypertrophy. Here, we discuss the precise regulation of Ras and Rho subfamilies of GTPases by GEFs and other regulatory proteins during cardiac hypertrophy. In addition, we summarize recent published data, mainly those describing the role of small G proteins in the development of myocardial hypertrophy and we further present the importance of their downstream effectors in myocardial remodelling.


Asunto(s)
Cardiomegalia/metabolismo , Reguladores de Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Animales , Humanos , Proteína de Unión al GTP rac1/metabolismo , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/metabolismo
10.
Cardiovasc Res ; 71(1): 97-107, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16682016

RESUMEN

OBJECTIVES: Myocardial stretch activates a number of interconnected pathways including the protein kinase C (PKC) pathway that in turn activates mitogen activated protein kinases (MAPK), leading to gene expression stimulation and ventricular hypertrophy. A role of calcineurin has also been shown during hypertrophy. The goal of our study was to look for a possible interconnection between PKC and calcineurin in myocardial stretch. METHODS: Neonatal rat cardiomyocytes were cultured for 5 days and a 15% stretch was applied. Expression of MAPK and PKC-epsilon was evaluated by Western blot analysis. The specific role of PKC-epsilon was evaluated by transfection of cardiomyocytes with a specific inhibitor peptide. Calcineurin and PKC-epsilon complex formation and co-localization were evaluated by co-immunoprecipitation and by immunolocalization. RESULTS: The PKC isoform involved in stretch-induced ERK and JNK activations was PKC-epsilon. We show here that calcineurin is also found to be involved in the stretch response and that calcineurin and PKC-epsilon co-operate at 2 levels during stretch. First, stretch-induced translocation of PKC-epsilon from the cytosolic to the membrane fraction was inhibited by calcineurin inhibitors, indicating that calcineurin was necessary for PKC-epsilon activation induced by stretch. A second level of interaction was the formation of a calcineurin-PKC-epsilon complex, which increased during stretch. Immunofluorescent studies indicated that, after stretch, calcineurin and PKC-epsilon were co-localized at the level of the perinuclear membrane. These results may have a major relevance in vivo since we also found similar PKC-epsilon-calcineurin complexes in the phase of thoracic aortic stenosis in rats during which heart failure develops. CONCLUSION: Calcineurin appears to be necessary for stretch-induced PKC-epsilon activation after which the phosphatase and the kinase are co-localized in a complex at the level of the perinuclear membrane where they may finely regulate the phosphorylation of their target proteins.


Asunto(s)
Calcineurina/metabolismo , Miocitos Cardíacos/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Transducción de Señal/fisiología , Animales , Estenosis de la Válvula Aórtica/metabolismo , Transporte Biológico Activo , Western Blotting/métodos , Cardiotónicos/farmacología , Membrana Celular/enzimología , Tamaño de la Célula , Células Cultivadas , Citosol/enzimología , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Ventrículos Cardíacos , Inmunoprecipitación , Isoproterenol/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos , Microscopía Fluorescente , Fosforilación , Ratas , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...