Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 331: 118323, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729535

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: India's ancient texts, the Charak Samhita and Sushruta Samhita, make reference to the traditional medicinal usage of Acorus calamus L. In India and China, it has long been used to cure stomach aches, cuts, diarrhea, and skin conditions. This ability of the rhizome is attributed to its antimicrobial properties. Research studies to date have shown its antimicrobial properties. However, scientific evidence on its mode of action is still lacking. AIM OF THE STUDY: Acorus calamus L. rhizome extract and its bioactive fraction exhibits antibacterial effect by modulating membrane permeability and fatty acid composition. MATERIAL AND METHOD: The secondary metabolites in the rhizome of A. calamus L. were extracted in hexane using Soxhlet apparatus. The ability of the extract to inhibit multidrug resistant bacterial isolates, namely Bacillus cereus, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa were evaluated using checkerboard assay. Further, the extract was purified using thin layer chromatography, gravity column chromatography, and combiflash chromatography. Structure elucidation of the active compound was done using GC-MS, FT-IR, and UV-Vis spectral scan. The mode of action of the bioactive fraction was determined. Bacterial membrane damage was analyzed using SEM, membrane permeability was determined using SYBR green I and PI dye, leakage of cytoplasmic contents were analyzed using Bradford assay and Fehling's reagent. The ability to inhibit efflux pump of A. baumannii was determined using EtBr accumulation assay and ß-lactamase inhibition was analyzed using nitrocefin as substrate. Also, the biofilm inhibition of B. cereus was determined using crystal violet dye. Moreover, the effect of the bioactive fraction on the fatty acid profile of the bacterial membrane was determined by GC-FAME analysis using 37 component FAME mix as standard. RESULTS: Acorus calamus L. rhizome hexane extract (AC-R-H) demonstrated broad-spectrum antibacterial activity against all the isolates tested. AC-R-H extract also significantly reduced the MIC of ampicillin against all tested bacteria, indicating its bacterial resistance modulating properties. The assay guided purification determined Asarone as the major compound present in the bioactive fraction (S-III-BAF). S-III-BAF was found to reduce the MIC of ampicillin against Escherichia coli (100-25 mg/mL), Pseudomonas aeruginosa (15-3.25 mg/mL), Acinetobacter baumannii (12.5-1.56 mg/ml), and Bacillus cereus (10-1.25 mg/mL). Further, it recorded synergistic activity with ampicillin against B. cereus (FICI = 0.365), P. aeruginosa (FICI = 0.456), and A. baumannii (FICI = 0.245). The mode of action of S-III-BAF can be attributed to its ability to disturb the membrane integrity, enhance membrane permeability, reduce biofilm formation, and possibly alter the fatty acid composition of the bacterial cell membranes. CONCLUSION: The bioactive fraction of AC-R-H extract containing Asarone as the active compound showed antibacterial activity and synergistic interactions with ampicillin against the tested bacterial isolates. Such activity can be attributed to the modulation of fatty acids present in bacterial membranes, which enhances membrane permeability and causes membrane damage.

2.
Bioresour Technol ; 301: 122721, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31986372

RESUMEN

The main aim of this work is focused towards possible reuse of both solid and liquid waste generated from the natural indigo dye production process. The solid waste (C/N:15.01) was utilized to produce stable compost with possible re-use in Indigofera cultivation. Among seven compost combinations (C1-C7) using jeevamrutha (JA) and cow-dung (CD) as inoculum, C4 with 8% JA showed higher biomass degradation (51%) and plant growth potential (GI > 125%). Whereas the undiluted liquid waste was treated using algal consortia, bacteria, and indigenous microbial population, achieved a maximum removal of 90% ammonia, 82% nitrate, and 88% phosphorus for its re-use in the dye production process. Hence, incorporation of suitable waste management strategies in natural indigo dye production could help to achieve a zero waste sustainable process.


Asunto(s)
Indigofera , Administración de Residuos , Animales , Biomasa , Bovinos , Colorantes , Femenino , Carmin de Índigo , Residuos Sólidos
3.
Sci Rep ; 8(1): 17513, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504790

RESUMEN

1-Aminocyclopropane-1-carboxylic acid (ACC) is a precursor molecule of ethylene whose concentration is elevated in the plant subjected to biotic and abiotic stress. Several soil microorganisms are reported to produce ACC deaminase (ACCd) which degrades ACC thereby reducing stress ethylene in host plants. This study is aimed to apply ACCd producing beneficial rhizobacteria to improve biochemical parameters and cell wall properties of Panicum maximum exposed to salt and drought stress, focusing on bioethanol production. Thirty-seven ACCd producing bacteria isolated from rhizospheric soil of field grown P. maximum and 13 were shortlisted based on their beneficial traits (root colonization, production of indole acetic acid, siderophore, hydrogen cyanide, phosphate solubilization, biofilm formation, tolerance to salt and Polyethylene glycol) and a total score obtained. All shortlisted bacteria were found significant in enhancing the plant growth, water conservation, membrane stability, biocompatible solutes and protein, phenolic contents and photosynthetic pigments in plants grown under stress conditions. Cell wall composition (Cellulose, Hemicellulose and Lignin) of the treated plants grown under stress conditions recorded a significant improvement over their respective controls and found equivalent to the plants grown under normal circumstances. Biomass from bacterial treatment recorded higher total reducing sugars upon pre-treatment and hydrolysis, and theoretical bioethanol yield.


Asunto(s)
Biomasa , Liasas de Carbono-Carbono/biosíntesis , Sequías , Panicum/microbiología , Panicum/fisiología , Estrés Salino , Adaptación Biológica , Fotosíntesis , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Microbiología del Suelo , Estrés Fisiológico , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA