Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Periodontol ; 50(3): 316-330, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36281629

RESUMEN

AIM: To assess the effects of scaling and root planing (SRP) on the dynamics of gene expression by the host and the microbiome in subgingival plaque samples. MATERIALS AND METHODS: Fourteen periodontitis patients were closely monitored in the absence of periodontal treatment for 12 months. During this period, comprehensive periodontal examination and subgingival biofilm sample collection were performed bi-monthly. After 12 months, clinical attachment level (CAL) data were compiled and analysed using linear mixed models (LMM) fitted to longitudinal CAL measurements for each tooth site. LMM classified the sites as stable (S), progressing (P), or fluctuating (F). After the 12-month visit, subjects received SRP, and at 15 months they received comprehensive examination and supportive periodontal therapy. Those procedures were repeated at the 18-month visit, when patients were also sampled. Each patient contributed with one S, one P, and one F site collected at the 12- and 18-month visits. Samples were analysed using Dual RNA-Sequencing to capture host and bacterial transcriptomes simultaneously. RESULTS: Microbiome and host response behaviour were specific to the site's progression classification (i.e., S, P, or F). Microbial profiles of pre- and post-treatment samples exhibited specific microbiome changes, with progressing sites showing the most significant changes. Among them, Porphyromonas gingivalis was reduced after treatment, while Fusobacterium nucleatum showed an increase in proportion. Transcriptome analysis of the host response showed that interleukin (IL)-17, TNF signalling pathways, and neutrophil extracellular trap formation were the primary immune response activities impacted by periodontal treatment. CONCLUSIONS: SRP resulted in a significant "rewiring" of host and microbial activities in the progressing sites, while restructuring of the microbiome was minor in stable and fluctuating sites.


Asunto(s)
Microbiota , Periodontitis , Humanos , Aplanamiento de la Raíz/métodos , Bolsa Periodontal/terapia , Bolsa Periodontal/microbiología , Periodontitis/terapia , Periodontitis/microbiología , Raspado Dental/métodos , Porphyromonas gingivalis , Microbiota/genética
2.
J Bacteriol ; 203(18): e0028421, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34280000

RESUMEN

Pseudomonas aeruginosa has four Na+/H+ antiporters that interconvert and balance Na+ and H+ gradients across the membrane. These gradients are important for bioenergetics and ionic homeostasis. To understand these transporters, we constructed four strains, each of which has only one antiporter, i.e., NhaB, NhaP, NhaP2, and Mrp. We also constructed a quadruple deletion mutant that has no Na+/H+ antiporters. Although the antiporters of P. aeruginosa have been studied previously, the strains constructed here present the opportunity to characterize their kinetic properties in their native membranes and their roles in the physiology of P. aeruginosa. The strains expressing only NhaB or Mrp, the two electrogenic antiporters, were able to grow essentially like the wild-type strain across a range of Na+ concentrations and pH values. Strains with only NhaP or NhaP2, which are electroneutral, grew more poorly at increasing Na+ concentrations, especially at high pH values, with the strain expressing NhaP being more sensitive. The strain with no Na+/H+ antiporters was extremely sensitive to the Na+ concentration and showed essentially no Na+(Li+)/H+ antiporter activity, but it retained most K+/H+ antiporter activity of the wild-type strain at pH 7.5 and approximately one-half at pH 8.5. We also used the four strains that each express one of the four antiporters to characterize the kinetic properties of each transporter. Transcriptome sequencing analysis of the quadruple deletion strain showed widespread changes, including changes in pyocyanin synthesis, biofilm formation, and nitrate and glycerol metabolism. Thus, the strains constructed for this study will open a new door to understanding the physiological roles of these proteins and their activities in P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa has four Na+/H+ antiporters that connect and interconvert its Na+ and H+ gradients. We have constructed four deletion mutants, each of which has only one of the four Na+/H+ antiporters. These strains made it possible to study the properties and physiological roles of each antiporter independently in its native membrane. Mrp and NhaB are each able to sustain growth over a wide range of pH values and Na+ concentrations, whereas the two electroneutral antiporters, NhaP and NhaP2, are most effective at low pH values. We also constructed a quadruple mutant lacking all four antiporters, in which the H+ and Na+ gradients are disconnected. This will make it possible to study the role of the two gradients independently.


Asunto(s)
Antiportadores/genética , Antiportadores/metabolismo , Proteínas Bacterianas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sodio/metabolismo , Antiportadores/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Pseudomonas aeruginosa/química , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
3.
Periodontol 2000 ; 85(1): 28-45, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33226688

RESUMEN

Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.


Asunto(s)
Caries Dental , Microbiota , Enfermedades Periodontales , Biopelículas , Humanos , Microbiota/genética , Boca
4.
Artículo en Inglés | MEDLINE | ID: mdl-30345066

RESUMEN

Imbalances of the microbiome, also referred to as microbial dysbiosis, could lead to a series of different diseases. One factor that has been shown to lead to dysbiosis of the microbiome is exposure to psychological stressors. Throughout evolution microorganisms of the human microbiome have developed systems for sensing host-associated signals such as hormones associated with those stressors, enabling them to recognize essential changes in their environment, thus changing their expression gene profile to fit the needs of the new environment. The most widely accepted theory explaining the ability of hormones to affect the outcome of an infection involves the suppression of the immune system. Commensal microbiota is involved in stressor-induced immunomodulation, but other biological effects are not yet known. Here we present the impact that cortisol had on the community-wide transcriptome of the oral community. We used a metatranscriptomic approach to obtain first insights into the metabolic changes induced by this stress hormone as well as which members of the oral microbiome respond to the presence of cortisol in the environment. Our findings show that the stress hormone cortisol directly induces shifts in the gene expression profiles of the oral microbiome that reproduce results found in the profiles of expression of periodontal disease and its progression.

5.
Mol Oral Microbiol ; 33(6): 407-419, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30171738

RESUMEN

In this study, we characterized a serine protease from Tannerella forsythia that degrades gelatin, type I, and III collagen. Tannerella forsythia is associated with periodontitis progression and severity. The primary goal of this research was to understand the mechanisms by which T. forsythia contributes to periodontitis progression. One of our previous metatranscriptomic analysis revealed that during periodontitis progression T. forsythia highly expressed the bfor_1659 ORF. The N-terminal end is homologous to dipeptidyl aminopeptidase IV (DPP IV). DPP IV is a serine protease that cleaves X-Pro or X-Ala dipeptide from the N-terminal end of proteins. Collagen type I is rich in X-Pro and X-Ala sequences, and it is the primary constituent of the periodontium. This work assessed the collagenolytic and gelatinolytic properties of BFOR_1659. To that end, the complete BFOR_1659 and its domains were purified as His-tagged recombinant proteins, and their collagenolytic activity was tested on collagen-like substrates, collagen type I and III combined, and on the extracellular matrix (ECM) formed on human gingival fibroblasts culture HGF-1. BFOR_1659 was only found in T. forsythia supernatants, highlighting its potential role on the pathogenicity of T. forsythia. We also found that BFOR_1659 efficiently degrades all tested substrates but the individual domains were inactive. Given that BFOR_1659 is highly expressed in the periodontal pocket, its clinical relevance is suggested to periodontitis progression.


Asunto(s)
Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Tannerella forsythia/enzimología , Línea Celular , Fibroblastos/metabolismo , Encía/metabolismo , Humanos , Bolsa Periodontal/microbiología
6.
PLoS Pathog ; 13(6): e1006457, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28632755

RESUMEN

Dysbiosis, or the imbalance in the structural and/or functional properties of the microbiome, is at the origin of important infectious inflammatory diseases such as inflammatory bowel disease (IBD) and periodontal disease. Periodontitis is a polymicrobial inflammatory disease that affects a large proportion of the world's population and has been associated with a wide variety of systemic health conditions, such as diabetes, cardiovascular and respiratory diseases. Dysbiosis has been identified as a key element in the development of the disease. However, the precise mechanisms and environmental signals that lead to the initiation of dysbiosis in the human microbiome are largely unknown. In a series of previous in vivo studies using metatranscriptomic analysis of periodontitis and its progression we identified several functional signatures that were highly associated with the disease. Among them, potassium ion transport appeared to be key in the process of pathogenesis. To confirm its importance we performed a series of in vitro experiments, in which we demonstrated that potassium levels a increased the virulence of the oral community as a whole and at the same time altering the immune response of gingival epithelium, increasing the production of TNF-α and reducing the expression of IL-6 and the antimicrobial peptide human ß-defensin 3 (hBD-3). These results indicate that levels of potassium in the periodontal pocket could be an important element in of dysbiosis in the oral microbiome. They are a starting point for the identification of key environmental signals that modify the behavior of the oral microbiome from a symbiotic community to a dysbiotic one.


Asunto(s)
Bacterias/aislamiento & purificación , Disbiosis/microbiología , Microbiota , Boca/microbiología , Periodontitis/microbiología , Potasio/inmunología , Bacterias/clasificación , Bacterias/genética , Disbiosis/inmunología , Encía/inmunología , Encía/microbiología , Humanos , Interleucina-6/inmunología , Boca/inmunología , Periodontitis/inmunología , Filogenia , Factor de Necrosis Tumoral alfa/inmunología , beta-Defensinas/inmunología
8.
Appl Environ Microbiol ; 81(19): 6688-99, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26187962

RESUMEN

The oral microbiome is one of the most complex microbial communities in the human body, and due to circumstances not completely understood, the healthy microbial community becomes dysbiotic, giving rise to periodontitis, a polymicrobial inflammatory disease. We previously reported the results of community-wide gene expression changes in the oral microbiome during periodontitis progression and identified signatures associated with increasing severity of the disease. Small noncoding RNAs (sRNAs) are key players in posttranscriptional regulation, especially in fast-changing environments such as the oral cavity. Here, we expanded our analysis to the study of the sRNA metatranscriptome during periodontitis progression on the same samples for which mRNA expression changes were analyzed. We observed differential expression of 12,097 sRNAs, identifying a total of 20 Rfam sRNA families as being overrepresented in progression and 23 at baseline. Gene ontology activities regulated by the differentially expressed (DE) sRNAs included amino acid metabolism, ethanolamine catabolism, signal recognition particle-dependent cotranslational protein targeting to membrane, intron splicing, carbohydrate metabolism, control of plasmid copy number, and response to stress. In integrating patterns of expression of protein coding transcripts and sRNAs, we found that functional activities of genes that correlated positively with profiles of expression of DE sRNAs were involved in pathogenesis, proteolysis, ferrous iron transport, and oligopeptide transport. These findings represent the first integrated sequencing analysis of the community-wide sRNA transcriptome of the oral microbiome during periodontitis progression and show that sRNAs are key regulatory elements of the dysbiotic process leading to disease.


Asunto(s)
Bacterias/genética , Microbiota , Periodontitis/microbiología , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Transcriptoma , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Progresión de la Enfermedad , Disbiosis/microbiología , Humanos , Datos de Secuencia Molecular , Boca/microbiología , Periodontitis/patología , Filogenia , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo
9.
Microbes Infect ; 17(7): 505-16, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25862077

RESUMEN

The oral microbiome plays a relevant role in the health status of the host and is a key element in a variety of oral and non-oral diseases. Despite advances in our knowledge of changes in microbial composition associated with different health conditions the functional aspects of the oral microbiome that lead to dysbiosis remain for the most part unknown. In this review, we discuss the progress made towards understanding the functional role of the oral microbiome in health and disease and how novel technologies are expanding our knowledge on this subject.


Asunto(s)
Caries Dental/etiología , Microbioma Gastrointestinal/inmunología , Estado de Salud , Interacciones Huésped-Patógeno/inmunología , Salud Bucal , Caries Dental/patología , Humanos , Metagenoma
10.
Genome Med ; 7(1): 27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25918553

RESUMEN

BACKGROUND: Periodontitis is a polymicrobial biofilm-induced inflammatory disease that affects 743 million people worldwide. The current model to explain periodontitis progression proposes that changes in the relative abundance of members of the oral microbiome lead to dysbiosis in the host-microbiome crosstalk and then to inflammation and bone loss. Using combined metagenome/metatranscriptome analysis of the subgingival microbiome in progressing and non-progressing sites, we have characterized the distinct molecular signatures of periodontitis progression. METHODS: Metatranscriptome analysis was conducted on samples from subgingival biofilms from progressing and stable sites from periodontitis patients. Community-wide expression profiles were obtained using Next Generation Sequencing (Illumina). Sequences were aligned using 'bowtie2' against a constructed oral microbiome database. Differential expression analysis was performed using the non-parametric algorithm implemented on the R package 'NOISeqBio'. We summarized global functional activities of the oral microbial community by set enrichment analysis based on the Gene Ontology (GO) orthology. RESULTS: Gene ontology enrichment analysis showed an over-representation in the baseline of active sites of terms related to cell motility, lipid A and peptidoglycan biosynthesis, and transport of iron, potassium, and amino acids. Periodontal pathogens (Tannerella forsythia and Porphyromonas gingivalis) upregulated different TonB-dependent receptors, peptidases, proteases, aerotolerance genes, iron transport genes, hemolysins, and CRISPR-associated genes. Surprisingly, organisms that have not been usually associated with the disease (Streptococcus oralis, Streptococcus mutans, Streptococcus intermedius, Streptococcus mitis, Veillonella parvula, and Pseudomonas fluorenscens) were highly active transcribing putative virulence factors. We detected patterns of activities associated with progression of clinical traits. Among those we found that the profiles of expression of cobalamin biosynthesis, proteolysis, and potassium transport were associated with the evolution towards disease. CONCLUSIONS: We identified metabolic changes in the microbial community associated with the initial stages of dysbiosis. Regardless of the overall composition of the community, certain metabolic signatures are consistent with disease progression. Our results suggest that the whole community, and not just a handful of oral pathogens, is responsible for an increase in virulence that leads to progression. TRIAL REGISTRATION: NCT01489839, 6 December 2011.

11.
Infect Immun ; 82(8): 3374-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24866802

RESUMEN

Oral microbial communities are extremely complex biofilms with high numbers of bacterial species interacting with each other (and the host) to maintain homeostasis of the system. Disturbance in the oral microbiome homeostasis can lead to either caries or periodontitis, two of the most common human diseases. Periodontitis is a polymicrobial disease caused by the coordinated action of a complex microbial community, which results in inflammation of tissues that support the teeth. It is the most common cause of tooth loss among adults in the United States, and recent studies have suggested that it may increase the risk for systemic conditions such as cardiovascular diseases. In a recent series of papers, Hajishengallis and coworkers proposed the idea of the "keystone-pathogen" where low-abundance microbial pathogens (Porphyromonas gingivalis) can orchestrate inflammatory disease by turning a benign microbial community into a dysbiotic one. The exact mechanisms by which these pathogens reorganize the healthy oral microbiome are still unknown. In the present manuscript, we present results demonstrating that P. gingivalis induces S. mitis death and DNA fragmentation in an in vitro biofilm system. Moreover, we report here the induction of expression of multiple transposases in a Streptococcus mitis biofilm when the periodontopathogen P. gingivalis is present. Based on these results, we hypothesize that P. gingivalis induces S. mitis cell death by an unknown mechanism, shaping the oral microbiome to its advantage.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Interacciones Microbianas , Porphyromonas gingivalis/fisiología , Streptococcus mitis/fisiología , Transposasas/biosíntesis , Fragmentación del ADN , Viabilidad Microbiana , Porphyromonas gingivalis/crecimiento & desarrollo , Streptococcus mitis/genética , Streptococcus mitis/crecimiento & desarrollo
12.
ISME J ; 8(8): 1659-72, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24599074

RESUMEN

Despite increasing knowledge on phylogenetic composition of the human microbiome, our understanding of the in situ activities of the organisms in the community and their interactions with each other and with the environment remains limited. Characterizing gene expression profiles of the human microbiome is essential for linking the role of different members of the bacterial communities in health and disease. The oral microbiome is one of the most complex microbial communities in the human body and under certain circumstances, not completely understood, the healthy microbial community undergoes a transformation toward a pathogenic state that gives rise to periodontitis, a polymicrobial inflammatory disease. We report here the in situ genome-wide transcriptome of the subgingival microbiome in six periodontally healthy individuals and seven individuals with periodontitis. The overall picture of metabolic activities showed that iron acquisition, lipopolysaccharide synthesis and flagellar synthesis were major activities defining disease. Unexpectedly, the vast majority of virulence factors upregulated in subjects with periodontitis came from organisms that are not considered major periodontal pathogens. One of the organisms whose gene expression profile was characterized was the uncultured candidate division TM7, showing an upregulation of putative virulence factors in the diseased community. These data enhance understanding of the core activities that are characteristic of periodontal disease as well as the role that individual organisms in the subgingival community play in periodontitis.


Asunto(s)
Bacterias/genética , Microbiota/genética , Periodontitis/microbiología , Transcriptoma , Adulto , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Humanos , Metagenoma , Filogenia , Factores de Virulencia/genética
13.
PLoS One ; 6(12): e28438, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163302

RESUMEN

The complexity of the human microbiome makes it difficult to reveal organizational principles of the community and even more challenging to generate testable hypotheses. It has been suggested that in the gut microbiome species such as Bacteroides thetaiotaomicron are keystone in maintaining the stability and functional adaptability of the microbial community. In this study, we investigate the interspecies associations in a complex microbial biofilm applying systems biology principles. Using correlation network analysis we identified bacterial modules that represent important microbial associations within the oral community. We used dental plaque as a model community because of its high diversity and the well known species-species interactions that are common in the oral biofilm. We analyzed samples from healthy individuals as well as from patients with periodontitis, a polymicrobial disease. Using results obtained by checkerboard hybridization on cultivable bacteria we identified modules that correlated well with microbial complexes previously described. Furthermore, we extended our analysis using the Human Oral Microbe Identification Microarray (HOMIM), which includes a large number of bacterial species, among them uncultivated organisms present in the mouth. Two distinct microbial communities appeared in healthy individuals while there was one major type in disease. Bacterial modules in all communities did not overlap, indicating that bacteria were able to effectively re-associate with new partners depending on the environmental conditions. We then identified hubs that could act as keystone species in the bacterial modules. Based on those results we then cultured a not-yet-cultivated microorganism, Tannerella sp. OT286 (clone BU063). After two rounds of enrichment by a selected helper (Prevotella oris OT311) we obtained colonies of Tannerella sp. OT286 growing on blood agar plates. This system-level approach would open the possibility of manipulating microbial communities in a targeted fashion as well as associating certain bacterial modules to clinical traits (e.g.: obesity, Crohn's disease, periodontal disease, etc).


Asunto(s)
Biopelículas , Metagenoma , Algoritmos , Bacteroides/genética , Teorema de Bayes , ADN/genética , Placa Dental/microbiología , Calor , Humanos , Modelos Biológicos , Modelos Genéticos , Modelos Teóricos , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Periodontitis/genética , Análisis de Componente Principal , Biología de Sistemas
14.
Mol Microbiol ; 64(4): 1061-74, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17501928

RESUMEN

Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with chronic adult periodontitis. Its ecological niche is the gingival crevice, where the organism adapts to the challenges of the infectious process such as host defence and bacterial products. Bacterial responses to environmental changes are partly regulated by two-component signal transduction systems. Several intact systems were annotated in the genome of P. gingivalis, as well as an orphan regulator encoding a homologue of RprY, a response regulator from Bacteroides fragilis. With the goal of defining the environmental cues that activate RprY in P. gingivalis, we used several strategies to identify its regulon. Results from gene expression and DNA-protein binding assays identified target genes that were either involved in transport functions or associated with oxidative stress, and indicated that RprY can act as an activator and a repressor. RprY positively activated the primary sodium pump, NADH : ubiquinone oxidoreductase (NQR), and RprY protein also interacted with the promoter regions of nqrA genes from B. fragilis and Vibrio cholerae. Given that gingival bleeding and infiltration of host defence cells are symptoms of periodontal infection, iron products released from blood and reactive oxygen species from polymorphonuclear leucocytes may be potential inducers of the RprY regulon.


Asunto(s)
Porphyromonas gingivalis/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Proteínas Bacterianas/biosíntesis , Bacteroides fragilis/genética , Secuencia de Bases , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Perfilación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Unión Proteica , ARN Bacteriano/biosíntesis , ARN Mensajero/biosíntesis , Regulón , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Factores de Transcripción/genética , Vibrio cholerae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...