Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 46(3): 962-974, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562125

RESUMEN

Rhizodeposition is the export of organic compounds from plant roots to the soil. Carbon allocation towards rhizodeposition has to be balanced with allocation for other physiological functions, which depend on both newly assimilated and stored nonstructural carbohydrate (NSC). To test whether the exudation of primary metabolites scales with plant NSC status, we studied diurnal dynamics of NSC and amino acid (AA) pools and fluxes within the plant and the rhizosphere. These diurnal dynamics were measured in the field and under hydroponic-controlled conditions. Further, C-limiting treatments offered further insight into the regulation of rhizodeposition. The exudation of primary metabolites fluctuated diurnally. The diurnal dynamics of soluble sugars (SS) and AA concentrations in tissues coincided with exudate pool fluctuations in the rhizosphere. SS and AA pools in the rhizosphere increased with NSC and AA pools in the roots. C starvation treatments offset the balance of exudates: AA exudate content in the rhizosphere significantly decreased while SS exudate content remained stable. Our results suggest that rhizodeposition is to some extent controlled by plant C:N status. We propose that SS exudation is less controlled than AA exudation because N assimilation depends on controlled C supply while SS exudation relies to a greater extent on passive diffusion mechanisms.


Asunto(s)
Carbono , Compuestos de Nitrógeno , Carbono/metabolismo , Compuestos de Nitrógeno/análisis , Compuestos de Nitrógeno/metabolismo , Pisum sativum/metabolismo , Rizosfera , Plantas/metabolismo , Aminoácidos/metabolismo , Raíces de Plantas/metabolismo , Suelo/química
2.
Front Plant Sci ; 12: 785221, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003170

RESUMEN

Legume plants, such as peas, are of significant nutritional interest for both humans and animals. However, plant nutrition and thus, seed composition, depends on soil mineral nutrient availability. Understanding the impact of their deprivation on the plant mineral nutrient content, net uptake, and remobilization is of key importance but remains complex as the elements of the plant ionome are linked in intricate networks, one element deprivation impacting uptake and remobilization of other nutrients. To get a better insight into pea mineral nutrition, the transitory deprivations of 13 mineral nutrients were imposed during the vegetative growth phase. Thereafter, plants were grown under optimal mineral conditions until physiological maturity. Plant nutritional status and seed quality impacts caused by the deprivations were characterized using measurement of mineral nutrient concentration and plant biomass allocation. Our results highlight: (i) the preferential allocation of dry weight and elements to shoots at the expense of the roots under non-limiting conditions, and more particularly to the tendrils in comparison to the other shoot organs, (ii) the positive and/or negative impact of one mineral nutrient deprivation on other elements of the ionome, (iii) four different remobilization strategies for eight mineral nutrients, and (iv) possible strategies to improve seed quality via fine control of fertilization during a period of mineral nutrient deficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...