Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 186(4): 1859-1877, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618107

RESUMEN

Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.


Asunto(s)
Aconitato Hidratasa/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Aconitato Hidratasa/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo
2.
Plant Cell ; 32(5): 1610-1625, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32111670

RESUMEN

Calcium-regulated protein kinases are key components of intracellular signaling in plants that mediate rapid stress-induced responses to changes in the environment. To identify in vivo phosphorylation substrates of CALCIUM-DEPENDENT PROTEIN KINASE1 (CPK1), we analyzed the conditional expression of constitutively active CPK1 in conjunction with in vivo phosphoproteomics. We identified Arabidopsis (Arabidopsis thaliana) ORESARA1 (ORE1), the developmental master regulator of senescence, as a direct CPK1 phosphorylation substrate. CPK1 phosphorylates ORE1 at a hotspot within an intrinsically disordered region. This augments transcriptional activation by ORE1 of its downstream target gene BIFUNCTIONAL NUCLEASE1 (BFN1). Plants that overexpress ORE1, but not an ORE1 variant lacking the CPK1 phosphorylation hotspot, promote early senescence. Furthermore, ORE1 is required for enhanced cell death induced by CPK1 signaling. Our data validate the use of conditional expression of an active enzyme combined with phosphoproteomics to decipher specific kinase target proteins of low abundance, of transient phosphorylation, or in yet-undescribed biological contexts. Here, we have identified that senescence is not just under molecular surveillance manifested by stringent gene regulatory control over ORE1 In addition, the decision to die is superimposed by an additional layer of control toward ORE1 via its posttranslational modification linked to the calcium-regulatory network through CPK1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Senescencia Celular , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calcio/farmacología , Muerte Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Biológicos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Quinasas/genética , Proteómica , Factores de Transcripción/genética
3.
Plant Physiol ; 182(2): 1161-1181, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31659127

RESUMEN

Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'γ is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short-day conditions. Here, we report molecular mechanisms by which PP2A-B'γ regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'γ to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In presenescent leaf tissues, PP2A-B'γ is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'γ depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'γ age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Botrytis/inmunología , Senescencia Celular/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Hojas de la Planta/metabolismo , Proteína Fosfatasa 2/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Senescencia Celular/fisiología , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Resistencia a la Enfermedad/inmunología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Genotipo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Mutación , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2/genética , Ácido Salicílico/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
4.
Front Plant Sci ; 7: 812, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375664

RESUMEN

Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants.

5.
Antioxidants (Basel) ; 5(1)2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26950157

RESUMEN

Reactive oxygen species (ROS) carry out vital functions in determining appropriate stress reactions in plants, but the molecular mechanisms underlying the sensing, signaling and response to ROS as signaling molecules are not yet fully understood. Recent studies have underscored the role of Protein Phosphatase 2A (PP2A) in ROS-dependent responses involved in light acclimation and pathogenesis responses in Arabidopsis thaliana. Genetic, proteomic and metabolomic studies have demonstrated that trimeric PP2A phosphatases control metabolic changes and cell death elicited by intracellular and extracellular ROS signals. Associated with this, PP2A subunits contribute to transcriptional and post-translational regulation of pro-oxidant and antioxidant enzymes. This review highlights the emerging role of PP2A phosphatases in the regulatory ROS signaling networks in plants.

6.
Plant Cell Environ ; 38(12): 2641-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26012558

RESUMEN

Plants survive periods of unfavourable conditions with the help of sensory mechanisms that respond to reactive oxygen species (ROS) as signalling molecules in different cellular compartments. We have previously demonstrated that protein phosphatase 2A (PP2A) impacts on organellar cross-talk and associated pathogenesis responses in Arabidopsis thaliana. This was evidenced by drastically enhanced pathogenesis responses and cell death in cat2 pp2a-b'γ double mutants, deficient in the main peroxisomal antioxidant enzyme CATALASE 2 and PP2A regulatory subunit B'γ (PP2A-B'γ). In the present paper, we explored the impacts of PP2A-B'γ and a highly similar regulatory subunit PP2A-B'ζ in growth regulation and light stress tolerance in Arabidopsis. PP2A-B'γ and PP2A-B'ζ display high promoter activities in rapidly growing tissues and are required for optimal growth under favourable conditions. Upon acclimation to a combination of high light, elevated temperature and reduced availability of water, however, pp2a-b'γζ double mutants grow similarly to the wild type and show enhanced tolerance against photo-oxidative stress. We conclude that by controlling ROS homeostasis and signalling, PP2A-B'γ and PP2A-B'ζ may direct acclimation strategies upon environmental perturbations, hence acting as important determinants of defence responses and light acclimation in plants.


Asunto(s)
Arabidopsis/enzimología , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína , Aclimatación , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Genes Reporteros , Homeostasis , Luz , Mutación , Estrés Oxidativo , Fosforilación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteína Fosfatasa 2/genética , Especies Reactivas de Oxígeno/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Estrés Fisiológico
7.
New Phytol ; 205(3): 1250-1263, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25307043

RESUMEN

Organellar reactive oxygen species (ROS) signalling is a key mechanism that promotes the onset of defensive measures in stress-exposed plants. The underlying molecular mechanisms and feedback regulation loops, however, still remain poorly understood. Our previous work has shown that a specific regulatory B'γ subunit of protein phosphatase 2A (PP2A) is required to control organellar ROS signalling and associated metabolic adjustments in Arabidopsis thaliana. Here, we addressed the mechanisms through which PP2A-B'γ impacts on organellar metabolic crosstalk and ROS homeostasis in leaves. Genetic, biochemical and pharmacological approaches, together with a combination of data-dependent acquisition (DDA) and selected reaction monitoring (SRM) MS techniques, were utilized to assess PP2A-B'γ-dependent adjustments in Arabidopsis thaliana. We show that PP2A-B'γ physically interacts with the cytoplasmic form of aconitase, a central metabolic enzyme functionally connected with mitochondrial respiration, oxidative stress responses and regulation of cell death in plants. Furthermore, PP2A-B'γ impacts ROS homeostasis by controlling the abundance of specific alternative oxidase isoforms, AOX1A and AOX1D, in leaf mitochondria. We conclude that PP2A-B'γ-dependent regulatory actions modulate the functional status of metabolic enzymes that essentially contribute to intracellular ROS signalling and metabolic homeostasis in plants.


Asunto(s)
Aconitato Hidratasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Citoplasma/enzimología , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fluorescencia , Peróxido de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Proteínas Mitocondriales/antagonistas & inhibidores , Datos de Secuencia Molecular , Mutación/genética , Oxidorreductasas/antagonistas & inhibidores , Péptidos/química , Fosforilación/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos
8.
Front Plant Sci ; 5: 405, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25191331

RESUMEN

The interactions between biotic and abiotic stress signaling pathways are complex and poorly understood but protein kinase/phosphatase cascades are potentially important components. Aphid fecundity and susceptibility to Pseudomonas syringae infection were determined in the low light-grown Arabidopsis thaliana wild type and in mutant lines defective in either the protein phosphatase (PP)2A regulatory subunit B'γ (gamma; pp2a-b'γ) or B'ζ (zeta; pp2a-b'ζ1-1 and pp2a-b'ζ 1-2) and in gamma zeta double mutants (pp2a-b'γζ) lacking both subunits. All the mutants except for pp2a-b'ζ 1-1 had significantly lower leaf areas than the wild type. Susceptibility to P. syringae was similar in all genotypes. In contrast, aphid fecundity was significantly decreased in the pp2a-b'γ mutant relative to the wild type but not in the pp2a-b'γζ double mutant. A high light pre-treatment, which led to a significant increase in rosette growth in all mutant lines but not in the wild type, led to a significant decrease in aphid fecundity in all genotypes. The high light pre-treatment abolished the differences in aphid resistance observed in the pp2a-b'γ mutant relative to the wild type. The light and CO2 response curves for photosynthesis were changed in response to the high light pre-treatment, but the high light effects were similar in all genotypes. These data demonstrate that a pre-exposure to high light and the composition of B-subunits on the trimeric PP2A holoenzymes are important in regulating plant resistance to aphids. The functional specificity for the individual regulatory B-subunits may therefore limit aphid colonization, depending on the prevailing abiotic stress environment.

9.
Plant Physiol Biochem ; 81: 128-34, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24361390

RESUMEN

Photosynthetic efficiency is a key trait that influences the sustainable utilization of plants for energy and nutrition. By now, extensive research on photosynthetic processes has underscored important structural and functional relationships among photosynthetic thylakoid membrane protein complexes, and their roles in determining the productivity and stress resistance of plants. Photosystem II photoinhibition-repair cycle, for example, has arisen vital in protecting also Photosystem I against light-induced damage. Availability of highly sophisticated genetic, biochemical and biophysical tools has greatly expanded the catalog of components that carry out photoprotective functions in plants. On thylakoid membranes, these components encompass a network of overlapping systems that allow delicate regulation of linear and cyclic electron transfer pathways, balancing of excitation energy distribution between the two photosystems and dissipation of excess light energy in the antenna system as heat. An increasing number of reports indicate that the above mentioned mechanisms also mediate important functions in the regulation of biotic stress responses in plants. Particularly the handling of excitation energy in the light harvesting II antenna complexes appears central to plant immunity signaling. Comprehensive understanding of the underlying mechanisms and regulatory cross-talk, however, still remain elusive. This review highlights the current understanding of components that regulate the function of photosynthetic light reactions and directly or indirectly also modulate disease resistance in higher plants.


Asunto(s)
Oxígeno/metabolismo , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Inmunidad de la Planta , Plantas/metabolismo , Transducción de Señal , Cloroplastos/metabolismo , Transporte de Electrón , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Plantas/inmunología , Plantas/efectos de la radiación , Estrés Fisiológico , Tilacoides/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(21): 8744-9, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23650383

RESUMEN

In animals and plants, pathogen recognition triggers the local activation of intracellular signaling that is prerequisite for mounting systemic defenses in the whole organism. We identified that Arabidopsis thaliana isoform CPK5 of the plant calcium-dependent protein kinase family becomes rapidly biochemically activated in response to pathogen-associated molecular pattern (PAMP) stimulation. CPK5 signaling resulted in enhanced salicylic acid-mediated resistance to the bacterial pathogen Pst DC3000, differential plant defense gene expression, and synthesis of reactive oxygen species (ROS). Using selected reaction monitoring MS, we identified the plant NADPH oxidase, respiratory burst oxidase homolog D (RBOHD), as an in vivo phosphorylation target of CPK5. Remarkably, CPK5-dependent in vivo phosphorylation of RBOHD occurs on both PAMP- and ROS stimulation. Furthermore, rapid CPK5-dependent biochemical and transcriptional activation of defense reactions at distal sites is compromised in cpk5 and rbohd mutants. Our data not only identify CPK5 as a key regulator of innate immune responses in plants but also support a model of ROS-mediated cell-to-cell communication, where a self-propagating mutual activation circuit consisting of the protein kinase, CPK5, and the NADPH oxidase RBOHD facilitates rapid signal propagation as a prerequisite for defense response activation at distal sites within the plant.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , NADPH Oxidasas/metabolismo , Enfermedades de las Plantas , Inmunidad de la Planta/fisiología , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/inmunología , Comunicación Celular/fisiología , Activación Enzimática/genética , Activación Enzimática/inmunología , Mutación , NADPH Oxidasas/genética , NADPH Oxidasas/inmunología , Fosforilación , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...