Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(42): eadi1562, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862414

RESUMEN

In almost all sexually reproducing organisms, meiotic recombination and cell division require the synapsis of homologous chromosomes by a large proteinaceous structure, the synaptonemal complex (SC). While the SC's overall structure is highly conserved across eukaryotes, its constituent proteins diverge between phyla. Transverse filament protein, SYCP1, spans the width of the SC and undergoes amino-terminal head-to-head self-assembly in vitro through a motif that is unusually highly conserved across kingdoms of life. Here, we report creation of mouse mutants, Sycp1L102E and Sycp1L106E, that target SYCP1's head-to-head interface. L106E resulted in a complete loss of synapsis, while L102E had no apparent effect on synapsis, in agreement with their differential effects on the SYCP1 head-to-head interface in molecular dynamics simulations. In Sycp1L106E mice, homologs aligned and recruited low levels of mutant SYCP1 and other SC proteins, but the absence of synapsis led to failure of crossover formation and meiotic arrest. We conclude that SYCP1's conserved head-to-head interface is essential for meiotic chromosome synapsis in vivo.


Asunto(s)
Emparejamiento Cromosómico , Proteínas Nucleares , Animales , Ratones , Recombinación Homóloga , Meiosis/genética , Proteínas Nucleares/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
2.
Cell Rep ; 34(2): 108603, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440163

RESUMEN

Anterior segment dysgenesis is often associated with cornea diseases, cataracts, and glaucoma. In the anterior segment, the ciliary body (CB) containing inner and outer ciliary epithelia (ICE and OCE) secretes aqueous humor that maintains intraocular pressure (IOP). However, CB development and function remain poorly understood. Here, this study shows that NOTCH signaling in the CB maintains the vitreous, IOP, and eye structures by regulating CB morphogenesis, aqueous humor secretion, and vitreous protein expression. Notch2 and Notch3 function via RBPJ in the CB to control ICE-OCE adhesion, CB morphogenesis, aqueous humor secretion, and protein expression, thus maintaining IOP and eye structures. Mechanistically, NOTCH signaling transcriptionally controls Nectin1 expression in the OCE to promote cell adhesion for driving CB morphogenesis and to directly stabilize Cx43 for controlling aqueous humor secretion. Finally, NOTCH signaling directly controls vitreous protein secretion in the ICE. Therefore, this study provides important insight into CB functions and involvement in eye diseases.


Asunto(s)
Cuerpo Ciliar/metabolismo , Nectinas/metabolismo , Receptor Notch2/metabolismo , Receptor Notch3/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos , Transducción de Señal
3.
Dev Biol ; 402(1): 3-16, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25794678

RESUMEN

Neural crest cells (NCC) comprise a multipotent, migratory stem cell and progenitor population that gives rise to numerous cell and tissue types within a developing embryo, including craniofacial bone and cartilage, neurons and glia of the peripheral nervous system, and melanocytes within the skin. Here we describe two novel stable transgenic mouse lines suitable for lineage tracing and analysis of gene function in NCC. Firstly, using the F10N enhancer of the Mef2c gene (Mef2c-F10N) linked to LacZ, we generated transgenic mice (Mef2c-F10N-LacZ) that express LacZ in the majority, if not all migrating NCC that delaminate from the neural tube. Mef2c-F10N-LacZ then continues to be expressed primarily in neurogenic, gliogenic and melanocytic NCC and their derivatives, but not in ectomesenchymal derivatives. Secondly, we used the same Mef2c-F10N enhancer together with Cre recombinase to generate transgenic mice (Mef2c-F10N-Cre) that can be used to indelibly label, or alter gene function in, migrating NCC and their derivatives. At early stages of development, Mef2c-F10N-LacZ and Mef2c-F10N-Cre label NCC in a pattern similar to Wnt1-Cre mice, with the exception that Mef2c-F10N-LacZ and Mef2c-F10N-Cre specifically label NCC that have delaminated from the neural plate, while premigratory NCC are not labeled. Thus, our Mef2c-F10N-LacZ and Mef2c-F10N-Cre transgenic mice provide new resources for tracing migratory NCC and analyzing gene function in migrating and differentiating NCC independently of NCC formation.


Asunto(s)
Elementos de Facilitación Genéticos , Integrasas/genética , Operón Lac , Ratones Transgénicos , Cresta Neural/citología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Pollos , Regulación del Desarrollo de la Expresión Génica , Genotipo , Humanos , Integrasas/metabolismo , Melanocitos/citología , Mesodermo/metabolismo , Ratones , Cresta Neural/metabolismo , Neuronas/metabolismo , Conejos , Ratas , Xenopus , Pez Cebra
4.
J Cell Biol ; 197(2): 239-51, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22492726

RESUMEN

The Arp2/3 complex nucleates the formation of the dendritic actin network at the leading edge of motile cells, but it is still unclear if the Arp2/3 complex plays a critical role in lamellipodia protrusion and cell motility. Here, we differentiated motile fibroblast cells from isogenic mouse embryonic stem cells with or without disruption of the ARPC3 gene, which encodes the p21 subunit of the Arp2/3 complex. ARPC3(-/-) fibroblasts were unable to extend lamellipodia but generated dynamic leading edges composed primarily of filopodia-like protrusions, with formin proteins (mDia1 and mDia2) concentrated near their tips. The speed of cell migration, as well as the rates of leading edge protrusion and retraction, were comparable between genotypes; however, ARPC3(-/-) cells exhibited a strong defect in persistent directional migration. This deficiency correlated with a lack of coordination of the protrusive activities at the leading edge of ARPC3(-/-) fibroblasts. These results provide insights into the Arp2/3 complex's critical role in lamellipodia extension and directional fibroblast migration.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Movimiento Celular , Fibroblastos/fisiología , Seudópodos/fisiología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Animales , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Femenino , Fibroblastos/ultraestructura , Técnicas de Inactivación de Genes , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
5.
J Neurosci ; 30(22): 7473-83, 2010 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-20519522

RESUMEN

In mammalian species, detection of pheromone cues by the vomeronasal organ (VNO) at different concentrations can elicit distinct behavioral responses and endocrine changes. It is not well understood how concentration-dependent activation of the VNO impacts innate behaviors. In this study, we find that, when mice investigate the urogenital areas of a conspecific animal, the urinary pheromones can reach the VNO at a concentration of approximately 1% of that in urine. At this level, urinary pheromones elicit responses from a subset of cells that are tuned to sex-specific cues and provide unambiguous identification of the sex and strain of animals. In contrast, low concentrations of urine do not activate these cells. Strikingly, we find a population of neurons that is only activated by low concentrations of urine. The properties of these neurons are not found in neurons responding to putative single-compound pheromones. Additional analyses show that these neurons are masked by high-concentration pheromones. Thus, an antagonistic interaction in natural pheromones results in the activation of distinct populations of cells at different concentrations. The differential activation is likely to trigger different downstream circuitry and underlies the concentration-dependent pheromone perception.


Asunto(s)
Señales (Psicología) , Neuronas/fisiología , Feromonas/orina , Órgano Vomeronasal/citología , Órgano Vomeronasal/fisiología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Relación Dosis-Respuesta a Droga , Potenciales Evocados/fisiología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Lectinas/genética , Lectinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/clasificación , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Feromonas/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Órgano Vomeronasal/efectos de los fármacos
6.
Development ; 135(4): 729-41, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18223201

RESUMEN

Neurogenesis requires the coordination of neural progenitor proliferation and differentiation with cell-cycle regulation. However, the mechanisms coordinating these distinct cellular activities are poorly understood. Here we demonstrate for the first time that a Cut-like homeodomain transcription factor family member, Cux2 (Cutl2), regulates cell-cycle progression and development of neural progenitors. Cux2 loss-of-function mouse mutants exhibit smaller spinal cords with deficits in neural progenitor development as well as in neuroblast and interneuron differentiation. These defects correlate with reduced cell-cycle progression of neural progenitors coupled with diminished Neurod and p27(Kip1) activity. Conversely, in Cux2 gain-of-function transgenic mice, the spinal cord is enlarged in association with enhanced neuroblast formation and neuronal differentiation, particularly with respect to interneurons. Furthermore, Cux2 overexpression induces high levels of Neurod and p27(Kip1). Mechanistically, we discovered through chromatin immunoprecipitation assays that Cux2 binds both the Neurod and p27(Kip1) promoters in vivo, indicating that these interactions are direct. Our results therefore show that Cux2 functions at multiple levels during spinal cord neurogenesis. Cux2 initially influences cell-cycle progression in neural progenitors but subsequently makes additional inputs through Neurod and p27(Kip1) to regulate neuroblast formation, cell-cycle exit and cell-fate determination. Thus our work defines novel roles for Cux2 as a transcription factor that integrates cell-cycle progression with neural progenitor development during spinal cord neurogenesis.


Asunto(s)
Ciclo Celular , Diferenciación Celular , Proteínas de Homeodominio/metabolismo , Neuronas/citología , Médula Espinal/citología , Células Madre/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo , Pollos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Embrión de Mamíferos/citología , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Mitosis , Modelos Neurológicos , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación/genética , Tubo Neural/anomalías , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , Médula Espinal/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...