Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci Methods ; 360: 109257, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34139266

RESUMEN

BACKGROUND: The chronically instrumented pregnant sheep has been used as a model of human fetal development and responses to pathophysiologic stimuli. This is due to the unique amenability of the unanesthetized fetal sheep to the surgical placement and maintenance of catheters and electrodes, allowing repetitive blood sampling, substance injection, recording of bioelectrical activity, application of electric stimulation, and in vivo organ imaging. Recently, there has been growing interest in the pleiotropic effects of vagus nerve stimulation (VNS) on various organ systems such as innate immunity and inflammation, and metabolism. There is no approach to study this in utero and corresponding physiological understanding is scarce. NEW METHOD: Based on our previous presentation of a stable chronically instrumented unanesthetized fetal sheep model, here we describe the surgical instrumentation procedure allowing successful implantation of a cervical uni- or bilateral VNS probe with or without vagotomy. RESULTS: In a cohort of 68 animals, we present the changes in blood gas, metabolic, and inflammatory markers during the postoperative period. We detail the design of a VNS probe which also allows recording from the fetal nerve. We also present an example of fetal vagus electroneurogram (VENG) recorded from the VNS probe and an analytical approach to the data. COMPARISON WITH EXISTING METHODS: This method represents the first implementation of fetal VENG/VNS in a large pregnant mammalian organism. CONCLUSIONS: This study describes a new surgical procedure allowing to record and manipulate chronically fetal vagus nerve activity in an animal model of human pregnancy.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Estimulación del Nervio Vago , Animales , Modelos Animales de Enfermedad , Femenino , Feto , Embarazo , Ovinos , Nervio Vago
2.
Front Immunol ; 10: 1063, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143190

RESUMEN

Neuroinflammation in utero may result in lifelong neurological disabilities. Astrocytes play a pivotal role in this process, but the mechanisms are poorly understood. No early postnatal treatment strategies exist to enhance neuroprotective potential of astrocytes. We hypothesized that agonism on α7 nicotinic acetylcholine receptor (α7nAChR) in fetal astrocytes will augment their neuroprotective transcriptome profile, while the inhibition of α7nAChR will achieve the opposite. Using an in vivo-in vitro model of developmental programming of neuroinflammation induced by lipopolysaccharide (LPS), we validated this hypothesis in primary fetal sheep astrocytes cultures re-exposed to LPS in the presence of a selective α7nAChR agonist or antagonist. Our RNAseq findings show that a pro-inflammatory astrocyte transcriptome phenotype acquired in vitro by LPS stimulation is reversed with α7nAChR agonistic stimulation. Conversely, α7nAChR inhibition potentiates the pro-inflammatory astrocytic transcriptome phenotype. Furthermore, we conducted a secondary transcriptome analysis against the identical α7nAChR experiments in fetal sheep primary microglia cultures. Similar to findings in fetal microglia, in fetal astrocytes we observed a memory effect of in vivo exposure to inflammation, expressed in a perturbation of the iron homeostasis signaling pathway (hemoxygenase 1, HMOX1), which persisted under pre-treatment with α7nAChR antagonist but was reversed with α7nAChR agonist. For both glia cell types, common pathways activated due to LPS included neuroinflammation signaling and NF-κB signaling in some, but not all comparisons. However, overall, the overlap on the level of signaling pathways was rather minimal. Astrocytes, not microglia-the primary immune cells of the brain, were characterized by unique inhibition patterns of STAT3 pathway due to agonistic stimulation of α7nAChR prior to LPS exposure. Lastly, we discuss the implications of our findings for fetal and postnatal brain development.


Asunto(s)
Astrocitos/fisiología , Encéfalo/metabolismo , Microglía/fisiología , Inflamación Neurogénica/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Encéfalo/patología , Bovinos , Células Cultivadas , Feto , Perfilación de la Expresión Génica , Lipopolisacáridos/inmunología , Neuroprotección , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
3.
PLoS One ; 11(4): e0153515, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27100089

RESUMEN

Fetal inflammation is associated with increased risk for postnatal organ injuries. No means of early detection exist. We hypothesized that systemic fetal inflammation leads to distinct alterations of fetal heart rate variability (fHRV). We tested this hypothesis deploying a novel series of approaches from complex signals bioinformatics. In chronically instrumented near-term fetal sheep, we induced an inflammatory response with lipopolysaccharide (LPS) injected intravenously (n = 10) observing it over 54 hours; seven additional fetuses served as controls. Fifty-one fHRV measures were determined continuously every 5 minutes using Continuous Individualized Multi-organ Variability Analysis (CIMVA). CIMVA creates an fHRV measures matrix across five signal-analytical domains, thus describing complementary properties of fHRV. We implemented, validated and tested methodology to obtain a subset of CIMVA fHRV measures that matched best the temporal profile of the inflammatory cytokine IL-6. In the LPS group, IL-6 peaked at 3 hours. For the LPS, but not control group, a sharp increase in standardized difference in variability with respect to baseline levels was observed between 3 h and 6 h abating to baseline levels, thus tracking closely the IL-6 inflammatory profile. We derived fHRV inflammatory index (FII) consisting of 15 fHRV measures reflecting the fetal inflammatory response with prediction accuracy of 90%. Hierarchical clustering validated the selection of 14 out of 15 fHRV measures comprising FII. We developed methodology to identify a distinctive subset of fHRV measures that tracks inflammation over time. The broader potential of this bioinformatics approach is discussed to detect physiological responses encoded in HRV measures.


Asunto(s)
Monitoreo Fetal/métodos , Frecuencia Cardíaca Fetal/fisiología , Inflamación/fisiopatología , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Citocinas/sangre , Citocinas/metabolismo , Femenino , Inflamación/inducido químicamente , Interleucina-6/sangre , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Embarazo , Análisis de Componente Principal , Reproducibilidad de los Resultados , Oveja Doméstica
4.
Front Cell Neurosci ; 9: 294, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300730

RESUMEN

OBJECTIVE: Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. METHODS: Lipopolysaccharide (LPS) or saline were administered intravenously to non-anesthetized chronically instrumented near-term fetal sheep to model fetal inflammation in vivo. Microglia were then isolated from in vivo LPS and saline (naïve) exposed animals. To mimic the second hit of neuroinflammation, these microglia were then re-exposed to LPS in vitro. Cytokine responses were measured in vivo and subsequently in vitro in the primary microglia cultures derived from these animals. We sequenced the whole transcriptome of naïve and second hit microglia and profiled their genetic expression to define molecular pathways disrupted during neuroinflammation. RESULTS: In vivo LPS exposure resulted in IL-6 increase in fetal plasma 3 h post LPS exposure. Even though not histologically apparent, microglia acquired a pro-inflammatory phenotype in vivo that was sustained and amplified in vitro upon second hit LPS exposure as measured by IL-1ß response in vitro and RNAseq analyses. While NFKB and Jak-Stat inflammatory pathways were up regulated in naïve microglia, heme oxygenase 1 (HMOX1) and Fructose-1,6-bisphosphatase (FBP) genes were uniquely differentially expressed in the second hit microglia. Compared to the microglia exposed to LPS in vitro only, the transcriptome of the in vivo LPS pre-exposed microglia showed a diminished differential gene expression in inflammatory and metabolic pathways prior and upon re-exposure to LPS in vitro. Notably, this desensitization response was also observed in histone deacetylases (HDAC) 1, 2, 4, and 6. Microglial calreticulin/LRP genes implicated in microglia-neuronal communication relevant for the neuronal development were up regulated in second hit microglia. DISCUSSION: We identified a unique HMOX1 down and FBP (up) phenotype of microglia exposed to the double-hit suggesting interplay of inflammatory and metabolic pathways. Our findings suggest that epigenetic mechanisms mediate this immunological and metabolic memory of the prior inflammatory insult relevant to neuronal development and provide new therapeutic targets for early postnatal intervention to prevent brain injury.

5.
Physiol Meas ; 36(10): 2089-102, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26290042

RESUMEN

Fetal inflammatory response occurs during chorioamnionitis, a frequent and often subclinical inflammation associated with increased risk for brain injury and life-lasting neurologic deficits. No means of early detection exist. We hypothesized that systemic fetal inflammation without septic shock will be reflected in alterations of fetal heart rate (FHR) variability (fHRV) distinguishing baseline versus inflammatory response states. In chronically instrumented near-term fetal sheep (n = 24), we induced an inflammatory response with lipopolysaccharide (LPS) injected intravenously (n = 14). Ten additional fetuses served as controls. We measured fetal plasma inflammatory cytokine IL-6 at baseline, 1, 3, 6, 24 and 48 h. 44 fHRV measures were determined continuously every 5 min using continuous individualized multi-organ variability analysis (CIMVA). CIMVA creates an fHRV measures matrix across five signal-analytical domains, thus describing complementary properties of fHRV. Using principal component analysis (PCA), a widely used technique for dimensionality reduction, we derived and quantitatively compared the CIMVA fHRV PCA signatures of inflammatory response in LPS and control groups. In the LPS group, IL-6 peaked at 3 h. In parallel, PCA-derived fHRV composite measures revealed a significant difference between LPS and control group at different time points. For the LPS group, a sharp increase compared to baseline levels was observed between 3 h and 6 h, and then abating to baseline levels, thus tracking closely the IL-6 inflammatory profile. This pattern was not observed in the control group. We also show that a preselection of fHRV measures prior to the PCA can potentially increase the difference between LPS and control groups, as early as 1 h post LPS injection. We propose a fHRV composite measure that correlates well with levels of inflammation and tracks well its temporal profile. Our results highlight the potential role of HRV to study and monitor the inflammatory response non-invasively over time.


Asunto(s)
Frecuencia Cardíaca Fetal/efectos de los fármacos , Lipopolisacáridos/farmacología , Sepsis/inducido químicamente , Sepsis/fisiopatología , Ovinos , Animales , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Embarazo , Análisis de Componente Principal , Sepsis/sangre
6.
Physiol Meas ; 35(12): L1-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25407948

RESUMEN

Fetal monitoring during labour currently fails to accurately detect acidemia. We developed a method to assess the multidimensional properties of fetal heart rate variability (fHRV) from trans-abdominal fetal electrocardiogram (fECG) during labour. We aimed to assess this novel bioinformatics approach for correlation between fHRV and neonatal pH or base excess (BE) at birth.We enrolled a prospective pilot cohort of uncomplicated singleton pregnancies at 38-42 weeks' gestation in Milan, Italy, and Liverpool, UK. Fetal monitoring was performed by standard cardiotocography. Simultaneously, with fECG (high sampling frequency) was recorded. To ensure clinician blinding, fECG information was not displayed. Data from the last 60 min preceding onset of second-stage labour were analyzed using clinically validated continuous individualized multiorgan variability analysis (CIMVA) software in 5 min overlapping windows. CIMVA allows simultaneous calculation of 101 fHRV measures across five fHRV signal analysis domains. We validated our mathematical prediction model internally with 80:20 cross-validation split, comparing results to cord pH and BE at birth.The cohort consisted of 60 women with neonatal pH values at birth ranging from 7.44 to 6.99 and BE from -0.3 to -18.7 mmol L(-1). Our model predicted pH from 30 fHRV measures (R(2) = 0.90, P < 0.001) and BE from 21 fHRV measures (R(2) = 0.77, P < 0.001).Novel bioinformatics approach (CIMVA) applied to fHRV derived from trans-abdominal fECG during labor correlated well with acid-base balance at birth. Further refinement and validation in larger cohorts are needed. These new measurements of fHRV might offer a new opportunity to predict fetal acid-base balance at birth.


Asunto(s)
Monitoreo Fetal/métodos , Frecuencia Cardíaca Fetal , Parto , Abdomen , Electrocardiografía , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Modelos Estadísticos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...