Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 222(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37638885

RESUMEN

Budding yeast cells have the capacity to adopt few but distinct physiological states depending on environmental conditions. Vegetative cells proliferate rapidly by budding while spores can survive prolonged periods of nutrient deprivation and/or desiccation. Whether or not a yeast cell will enter meiosis and sporulate represents a critical decision that could be lethal if made in error. Most cell fate decisions, including those of yeast, are understood as being triggered by the activation of master transcription factors. However, mechanisms that enforce cell fates posttranscriptionally have been more difficult to attain. Here, we perform a forward genetic screen to determine RNA-binding proteins that affect meiotic entry at the posttranscriptional level. Our screen revealed several candidates with meiotic entry phenotypes, the most significant being RIE1, which encodes an RRM-containing protein. We demonstrate that Rie1 binds RNA, is associated with the translational machinery, and acts posttranscriptionally to enhance protein levels of the master transcription factor Ime1 in sporulation conditions. We also identified a physical binding partner of Rie1, Sgn1, which is another RRM-containing protein that plays a role in timely Ime1 expression. We demonstrate that these proteins act independently of cell size regulation pathways to promote meiotic entry. We propose a model explaining how constitutively expressed RNA-binding proteins, such as Rie1 and Sgn1, can act in cell fate decisions both as switch-like enforcers and as repressors of spurious cell fate activation.


Asunto(s)
Meiosis , Proteínas de la Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Puntos de Control del Ciclo Celular , Diferenciación Celular/genética , Tamaño de la Célula , Meiosis/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de la Membrana/genética
2.
Cell Death Dis ; 14(5): 299, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130837

RESUMEN

In response to stress, cells make a critical decision to arrest or undergo apoptosis, mediated in large part by the tumor suppressor p53. Yet the mechanisms of these cell fate decisions remain largely unknown, particularly in normal cells. Here, we define an incoherent feed-forward loop in non-transformed human squamous epithelial cells involving p53 and the zinc-finger transcription factor KLF5 that dictates responses to differing levels of cellular stress from UV irradiation or oxidative stress. In normal unstressed human squamous epithelial cells, KLF5 complexes with SIN3A and HDAC2 repress TP53, allowing cells to proliferate. With moderate stress, this complex is disrupted, and TP53 is induced; KLF5 then acts as a molecular switch for p53 function by transactivating AKT1 and AKT3, which direct cells toward survival. By contrast, severe stress results in KLF5 loss, such that AKT1 and AKT3 are not induced, and cells preferentially undergo apoptosis. Thus, in human squamous epithelial cells, KLF5 gates the response to UV or oxidative stress to determine the p53 output of growth arrest or apoptosis.


Asunto(s)
Células Epiteliales , Factores de Transcripción de Tipo Kruppel , Proteína p53 Supresora de Tumor , Humanos , Apoptosis/genética , Diferenciación Celular , Factores de Transcripción de Tipo Kruppel/genética , Estrés Oxidativo , Proteína p53 Supresora de Tumor/genética
3.
Dev Cell ; 56(1): 22-35.e7, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33278343

RESUMEN

Retrotransposon proliferation poses a threat to germline integrity. While retrotransposons must be activated in developing germ cells in order to survive and propagate, how they are selectively activated in the context of meiosis is unclear. We demonstrate that the transcriptional activation of Ty3/Gypsy retrotransposons and host defense are controlled by master meiotic regulators. We show that budding yeast Ty3/Gypsy co-opts binding sites of the essential meiotic transcription factor Ndt80 upstream of the integration site, thereby tightly linking its transcriptional activation to meiotic progression. We also elucidate how yeast cells thwart Ty3/Gypsy proliferation by blocking translation of the retrotransposon mRNA using amyloid-like assemblies of the RNA-binding protein Rim4. In mammals, several inactive Ty3/Gypsy elements are undergoing domestication. We show that mammals utilize equivalent master meiotic regulators (Stra8, Mybl1, Dazl) to regulate Ty3/Gypsy-derived genes in developing gametes. Our findings inform how genes that are evolving from retrotransposons can build upon existing regulatory networks during domestication.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Germinativas/metabolismo , Meiosis/genética , Proteínas de Unión al ARN/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sitios de Unión , Secuenciación de Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Meiosis/fisiología , Ratones , Zarigüeyas/genética , Zarigüeyas/metabolismo , Biosíntesis de Proteínas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/genética , ADN Polimerasa Dirigida por ARN/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...