Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 11(1): 8040, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850186

RESUMEN

Cadmium (Cd) is a toxic and very mobile heavy metal that can be adsorbed and uptaken by plants in large quantities without any visible sign. Therefore, stabilization of Cd before uptake is crucial to the conservation of biodiversity and food safety. Owing to the high number of carboxyl and phenolic hydroxyl groups in their structure, humic substances form strong bonds with heavy metals which makes them perfect stabilizing agents. The aim of this study was to determine the effects of humic and fulvic acid (HA + FA) levels (0, 3500, 5250, and 7000 mg/L) on alleviation of Cadmium (Cd) toxicity in garden cress (Lepidium sativum) contaminated with Cd (CdSO4.8H2O) (0, 100, and 200 Cd mg/kg) under greenhouse conditions. Our results showed that, Cd stress had a negative effect on the growth of garden cress, decreased leaf fresh, leaf dry, root fresh and root dry weights, leaf relative water content (LRWC), and mineral content except for Cd, and increased the membrane permeability (MP) and enzyme (CAT, SOD and POD) activity. However, the HA + FA applications decreased the adverse effects of the Cd pollution. At 200 mg/kg Cd pollution, HA + FA application at a concentration of 7000 mg/L increased the leaf fresh, leaf dry, root fresh, root dry weights, stem diameter, leaf area, chlorophyll reading value (CRV), MP, and LRWC values by 262%, 137%, 550%,133%, 92%, 104%, 34%, 537%, and 32% respectively, compared to the control. Although the highest H2O2, MDA, proline and sucrose values were obtained at 200 mg/L Cd pollution, HA + FA application at a concentration of 7000 mg/L successfully alleviated the deleterious effects of Cd stress by decreasing H2O2, MDA, proline, and sucrose values by 66%, 68%, 70%, and 56%, respectively at 200 mg/kg Cd pollution level. HA + FA application at a concentration of 7000 mg/L successfully mitigated the negative impacts of Cd pollution by enhanced N, P, K, Ca, Mg, Fe, Mn, Cu, Mn, Zn, and B by 75%, 23%, 84%, 87%, 40%, 85%, 143%, 1%, 65%, and 115%, respectively. In addition, HA + FA application at a concentration of 7000 mg/L successfully reduced Cd uptake by 95% and Cl uptake by 80%. Considering the plant growth parameters, the best results were determined when HA + FA concentration was 7000 mg/L. We have shown that, it is critical to apply a humic substance with high percentage of FA, which was 10% in this study, to mitigate the adverse effects of heavy metal stress on plant growth. In conclusion, the application of HA + FA may be suggested as an effective solution for reducing the Cd uptake of the plants by stabilizing Cd in soil and preventing translocation of Cd from the roots of plant to its shoot and leaves.


Asunto(s)
Benzopiranos , Cadmio , Lepidium sativum , Sustancias Húmicas , Peróxido de Hidrógeno/farmacología , Raíces de Plantas/efectos de los fármacos , Suelo/química
3.
Biotechnol Appl Biochem ; 68(5): 1067-1075, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32919432

RESUMEN

In the present study, the phytase enzyme was purified from Lactobacillus plantarum with a 3.08% recovery, 9.57-purification fold, and with a specific activity of 278.82 EU/mg protein. Then, the effects of the 5 EU and 10 EU purified phytase was determined on the plant growth, quality, the macro-micro nutrient content of pansy (Viola × wittrockiana), which is of great importance in ornamental plants industry. The research was established under greenhouse conditions with natural light in 2017. The pansy seeds were coated with phytase enzyme solution, sown in a peat environment, and transferred to pots at the seedling period. In general, the 5 EU and 10 EU applications increase plant height, the number of leaves per plant, the number of side branches per plant, and flower height parameters compared to control. Also, micro- and macronutrient values in soil and plant samples were examined. According to the results, the phytase application on pansy cultivation positively affected the properties and yielded high quality of plants.


Asunto(s)
6-Fitasa/aislamiento & purificación , Lactobacillus plantarum/enzimología , Nutrientes/análisis , Viola/crecimiento & desarrollo , 6-Fitasa/metabolismo , Semillas/química , Semillas/metabolismo , Viola/química , Viola/metabolismo
4.
J Med Food ; 13(1): 196-204, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20136455

RESUMEN

The objective of this study was to determine the chemical compositions of the essential oil and hexane extract isolated from the inflorescence, leaf stems, and aerial parts of Florence fennel and the antimicrobial activities of the essential oil, hexane extract, and their major component, anethole, against a large variety of foodborne microorganisms. Gas chromatography and gas chromatography-mass spectrometry analysis showed that the essential oils obtained from inflorescence, leaf stems, and whole aerial parts contained (E)-anethole (59.28-71.69%), limonene (8.30-10.73%), apiole (trace to 9.23%), beta-fenchyl acetate (3.02-4.80%), and perillene (2.16-3.29%) as the main components. Likewise, the hexane extract of the plant sample exhibited a similar chemical composition, and it contained (E)-anethole (53.00%), limonene (27.16%), gamma-terpinene (4.09%), and perillene (3.78%). However, the hexane extract also contained less volatile components such as n-hexadecanoic acid (1.62%), methyl palmitate (1.17%), and linoleic acid (1.15%). The in vitro antimicrobial assays showed that the essential oil, anethole, and hexane extract were effective against most of the foodborne pathogenic, saprophytic, probiotic, and mycotoxigenic microorganisms tested. The results of the present study revealed that (E)-anethole, the main component of Florence fennel essential oil, is responsible for the antimicrobial activity and that the essential oils as well as the hexane extract can be used as a food preservative. This study is the first report showing the antimicrobial activities of essential oil and hexane extract of Florence fennel against probiotic bacteria.


Asunto(s)
Anisoles/farmacología , Antiinfecciosos/farmacología , Foeniculum/química , Microbiología de Alimentos , Hexanos/farmacología , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Derivados de Alilbenceno , Bacterias/efectos de los fármacos , Conservantes de Alimentos/farmacología , Hongos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Estructuras de las Plantas , Probióticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...