Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Int ; 111(1): 97-123, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38436684

RESUMEN

The aim of this study is to show the relationship between the change in the strengthening of synaptic plasticity and tau phosphorylation and tau-kinases and phosphatase. The averages of the field excitatory-postsynaptic potential (fEPSP) and population spike (PS) in the last 5 min were used as a measure of LTP, LTD and MP. Total and phosphorylated levels of tau, kinases and phosphatases were evaluated by western blot and mRNA levels were evaluated by RT-qPCR. The stimulation of synapses by HFS and LFS+HFS increased the phosphorylation of total-tau and phospho-tau at the Thr181, Ser202/Thr205, Ser396 and Ser416 residues, and these were accompanied by increased enzymatic activity of Akt, ERK1/2. The increased phosphorylation of tau may mediate maintenance of LTP. If the increase in phosphorylation of tau cannot be prevented, together with inhibition of the subsequent LTP, this may indicate that the physiological role of hyperphosphorylated tau in synaptic plasticity may extend to pathological processes.


Asunto(s)
Plasticidad Neuronal , Monoéster Fosfórico Hidrolasas , Proteínas tau , Plasticidad Neuronal/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Proteínas tau/metabolismo , Masculino , Animales , Ratas , Ratas Wistar
2.
Neuroendocrinology ; 114(4): 400-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171345

RESUMEN

INTRODUCTION: Thyroid hormones, which produce critical changes in our bodies even when their physiological levels alter slightly, are crucial hormones that influence gene transcription. Neuronal plasticity, on the other hand, requires both the activation of local proteins as well as protein translation and transcription in response to external signals. So far, no study has examined metaplastic long-term potentiation (LTP) and related gene expression levels in a hyperthyroid experimental model. METHODS: The Wistar male rats were administered 0.2 mg/kg/day of l-thyroxine for 21 days to induce hyperthyroidism. Perforant path was primed with 1-Hz low-frequency stimuli (LFS) for 900 s to investigate metaplasticity responses. The LFS was followed by high-frequency stimuli (HFS, 100 Hz) after 5 min. Excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude were recorded from the granule cell layer of the dentate gyrus. The mRNA levels of genes related to neurodegeneration (Gsk-3ß, Cdk5, Akt1, Mapt, p35, Capn1, Bace1, and Psen2) were measured using the RT-PCR method for the stimulated hippocampus. RESULTS: Similar to euthyroid rats, hyperthyroid animals had a lower EPSP slope and PS after LFS. Depression of EPSP prevented subsequently induced EPSP-LTP, although HFS was able to elicit PS-LTP despite depression of PS amplitude in both groups. Despite similarities in metaplastic LTP responses, these electrophysiological findings were accompanied by increased Akt, Bace1, Cdk5, and p35-mRNA expressions and decreased Gsk-3ß mRNA expression in hyperthyroid rats' hippocampus. CONCLUSION: These data support the view that in thyroid hormone excess, the mechanism that keeps synaptic efficacy within a dynamic range occurs concurrently with increased mRNA expression of neurodegeneration-related genes. Our study encourages further examination of the increased risk of neurodegenerative disease in hyperthyroidism.


Asunto(s)
Hipertiroidismo , Enfermedades Neurodegenerativas , Ratas , Masculino , Animales , Ratas Wistar , Secretasas de la Proteína Precursora del Amiloide/efectos adversos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Regulación hacia Arriba , Enfermedades Neurodegenerativas/metabolismo , Ácido Aspártico Endopeptidasas/efectos adversos , Ácido Aspártico Endopeptidasas/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Hipertiroidismo/inducido químicamente , Hipertiroidismo/metabolismo , ARN Mensajero/metabolismo , Expresión Génica , Giro Dentado/metabolismo
3.
Psychoneuroendocrinology ; 157: 106343, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562098

RESUMEN

The discovery that brain areas involving in learning and memory express receptors for insulin hormone, led to the idea that insulin signaling may have a role in regulating cognitive function. Although previous studies have shown a role for insulin in regulation of the threshold of plasticity induction, no study has addressed whether insulin can induce a chemical plasticity per se. Young-adult male rats that are fed with standard diets with or without carbohydrate syrup (sucrose or high-fructose corn syrups) were enrolled in this study. Extracellular field potentials were recorded from the dentate gyrus in response to perforant pathway stimulation at 0.033 Hz in anesthetized rats. The slope of field excitatory postsynaptic potentials (fEPSPs) and the amplitude of population spike (PS) were measured 15 min after a 60-min infusion of insulin (500 nM), NT157 (an IRS inhibitor, 6 µM), alone or together, or physiological saline. mRNA expressions of insulin signaling proteins were measured by rt-PCR in the whole hippocampus. We did not observe any appreciable change in the fEPSP slope and the PS amplitude before and after saline infusion. However, intra-hippocampal insulin application results in the induction of LTP of fEPSP and of PS in the dentate gyrus. Insulin infusion together with NT157 inhibited fEPSP-LTP, but not PS-LTP, and rats that are fed with carbohydrate syrup did not express synaptic LTP. In rats that additional carbohydrate syrup is not given, insulin-induced LTP was accompanied with an increase in PI3K-mRNA, AKT-mRNA, and GSK-3ß-mRNA which was not observed when co-administered with NT157. The GSK-3ß-mRNA and IRS1-mRNA levels were found to be lower in rats that received supplemental carbohydrate and that not express insulin-induced synaptic LTP, compared to the rats expressing synaptic LTP and fed by standard diet. The results obtained provide a mechanistic link between insulin and synaptic plasticity. We concluded that insulin not only functions as a modulator of synaptic plasticity but also acts as a chemical inducer of LTP.


Asunto(s)
Giro Dentado , Potenciación a Largo Plazo , Ratas , Masculino , Animales , Potenciación a Largo Plazo/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Giro Dentado/metabolismo , Insulina/farmacología , Insulina/metabolismo , Ratas Wistar , Hipocampo/metabolismo , Carbohidratos , ARN Mensajero/metabolismo
4.
Physiol Behav ; 255: 113939, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35961608

RESUMEN

The present study investigates sex differences in hippocampal functions in the context of synaptic plasticity, which is the cellular basis of learning and memory, and differences in the mitogen-activated protein kinase (MAPK) pathway that accompanies plasticity in young-adult rats. The long-term potentiation (LTP) and long-term depression (LTD) were induced by stimulating the perforant pathway (PP) and field potentials composed of the field excitatory post-synaptic potential (fEPSP) and population spike (PS) were recorded from the dentate gyrus (DG). Following the completion of the electrophysiological recordings, the hippocampi were removed bilaterally, and the protein and gene expression levels of the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and P38-MAPK were determined by Western blot analysis and real-time PCR, respectively. No significant difference was found in synaptic and neuronal function before (basal) and after high-frequency stimulation between male and female rats. Nevertheless, female, but not male, rats were able to express long term depression at the PP - DG synapses, suggesting that sex differences in plasticity are stimulation paradigm specific. MAPK1 expression was higher in males and MAPK3 expression was higher in females, but these differences disappeared after induction of plasticity in both sexes. While the expression of MAPK8 is influenced by sex, independent of the induction of plasticity, MAPK14 expression was down regulated by plasticity induction in females, but not males. No effect of sex, HFS and LFS on total and phosphorylated levels of MAPKs was found except phosphorylated ERK1/2. Phosphorylation of ERK1/2 was up regulated after LFS in male rats but did not change in female rats. These findings indicate that LFS-induced plasticity is differentially modulated between sexes, probably as a result of increased activation of ERK1/2 in male rats.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Caracteres Sexuales , Animales , Giro Dentado , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores , Femenino , Hipocampo/metabolismo , Potenciación a Largo Plazo , Masculino , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Plasticidad Neuronal/fisiología , Ratas
5.
Int J Dev Neurosci ; 82(7): 654-663, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35904470

RESUMEN

AIM: Aging involves progressive physiological changes, including thyroid dysfunction; thus, changes in plasma thyroid hormone (TH) level may affect neuronal function such as synaptic plasticity and Tau phosphorylation. However, how Tau protein is modulated in hyperthyroidism with aging is not clear. To clarify this issue, long-term potentiation (LTP) and accompanying phosphorylation of Tau protein in different residues were investigated in the hippocampus of young and old rats with experimentally induced hyperthyroidism. MATERIALS AND METHODS: The study was performed in vivo under urethane anesthesia on 2- and 12-month-old Wistar albino male rats. Field potentials, composed of a field of excitatory postsynaptic potential (fEPSP) and a population spike (PS), occurring in the hippocampal dentate gyrus region, were recorded by applying high-frequency stimulation (HFS) to the perforant pathway (100 Hz, four times at 5-min intervals) to induce LTP. Total-Tau and phosphorylated-Tau were measured in HFS-induced hippocampus by using western blotting. RESULTS: The TH suppressed hippocampal somatic LTP (PS) was suppressed with aging, and treatment improved this suppression in aged rats without any changes in synaptic LTP (fEPSP). The phosphorylation of Tau at Ser202/Thr205 and Thr231 residues was increased in aged control rats. Treatment of aged rats with l-thyroxine reduced the phosphorylation of Tau at these residues to the young control condition. CONCLUSION: Impaired LTP that occurs with aging may be among the underlying causes of dementia in relatively older ages, and l-thyroxine treatment restores this impaired LTP. In addition, the phosphorylation level of Tau epitopes known to play a role in the pathogenesis of Alzheimer's disease may support a critical role in the modulation of synaptic plasticity in hyperthyroidism.


Asunto(s)
Hipertiroidismo , Proteínas tau , Ratas , Animales , Proteínas tau/metabolismo , Ratas Wistar , Giro Dentado , Tiroxina/farmacología , Hipertiroidismo/metabolismo
6.
Brain Res Bull ; 182: 90-101, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35151798

RESUMEN

The present study is concerned with assessing differences in plasticity-induced neurodegeneration-related gene expressions and tau phosphorylation between young-aged and middle-aged rats. The experiments were carried out in vivo under urethane anesthesia on adult male Wistar rats between the ages of 2-3 months and 11-12 months. Field potentials, composed of a field of excitatory-postsynaptic potential (fEPSP) and a population-spike (PS), were recorded from granule cells of the dentate gyrus. Plasticity was induced by high-frequency (HFS) or low frequency stimulation (LFS). mRNA of neurodegeneration-related genes and total-and phosphorylated-tau were measured in HFS-and LFS-induced hippocampus by using quantitative rt-PCR and Western blotting. In addition, naive rats (unstimulated) were tested for spatial learning and memory with a 5-day Morris water maze (MWM). HFS-induced LTP of PS had attenuated in middle-aged rats, but there were no gross differences in baseline synaptic function, HFS-induced fEPSP and LFS-induced fEPSP, and PS plasticity between young-aged and middle-aged rats. Relative to young-aged rats, in middle-aged rats, HFS-induced MAPT, CDK5, and AKT1 genes were more up regulated, while LFS-induced Bace1, PSEN2, CAPN1, ANXA, CDK5, and GSK-3ß genes were more down-regulated. Tau and p-tauThr231 were increased by HFS/LFS in the hippocampus of middle-aged rats compared to those of young-aged rats. In MWM, despite the difference in searching strategy of both age groups of rats, memory was not affected by age. Impaired long-term potentiation (LTP) and accompanying changes in intracellular biological markers may underlie in neurodegenerative disease characterized by dementia that occurs gradually later ages. However, these changes were not reflected in behavioral spatial memory.


Asunto(s)
Enfermedades Neurodegenerativas , Secretasas de la Proteína Precursora del Amiloide , Animales , Ácido Aspártico Endopeptidasas , Glucógeno Sintasa Quinasa 3 beta , Masculino , Memoria a Largo Plazo , Enfermedades Neurodegenerativas/genética , Plasticidad Neuronal , Ratas , Ratas Wistar
7.
Int J Neurosci ; 132(7): 662-672, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33169646

RESUMEN

AIM OF THE STUDY: We investigated protective effect of sodium selenite (Se) on hypothyroidism-induced impairments in, Morris water maze (MWM), long-term potentiation (LTP) and hippocampal neurogenesis male Wistar rats aged of 2 months. MATERIALS AND METHODS: Hypothyroidism was induced by administration of propylthiouracil (Ptu, 1 mg/kg/d) solution to the rats from postnatal day 60 for 81 days with or without Se (0.5mg/kg/d). Neurogenesis was examined by Ki-67 immunohistochemical staining. Se values on plasma and hippocampus were measured with inductively coupled plasma-mass spectrometry (ICP-MS). RESULTS: Measurement of fT3 and fT4 levels confirmed that the fT3 levels, but not fT4, in Ptu-treated rats (5435.44±816.05 fg/ml, p < 0.05) has returned to control values (8721.66±2567.68 fg/ml) by Se treatment (8661.65±711.43 fg/ml). Analysis of learning performance in water escape learning task showed that Se supplementation disappeared memory deficit in Ptu-treated rats as shown by significantly decreased time spent in the target quadrant (33.7±0.24% in control group; 26.1±0.48% in Ptu-group, p < 0.05; 33.9±0.44 in Ptu+Se group), although there was no significant difference among groups in any measurement of learning performance on the last day. Considering LTP, Se supplementation improved the deficit in synaptic plasticity in Ptu-treated rats, as shown by significant increase in the excitatory postsynaptic potential slope (% 243±31 in control group; 172±49 in Ptu-group, p < 0.05; 222±65 in Ptu+Se group) without affecting of the impairment in somatic plasticity. Se supplementation did not improve the decrease in the number of progenitor cells in the subgranular layer (SGL) of dentate gyrus (DG) of Ptu treated rats. CONCLUSIONS: These findings suggest that selenium supplementation in hypothyroid patients may improve learning and memory disorders with different physiological mechanisms.HighlightsSe increased serum fT3 levels and hippocampus Se levels in hypothyroid rats.Se attenuated impairment of population spike-LTP in hypothyroid ratsHypothyroidism disrupts neurogenesis process in the dentate gyrus of hippocampus.Se supplementation could not increase new born cells in hypothyroid rats.


Asunto(s)
Hipotiroidismo , Selenito de Sodio , Animales , Hipocampo , Hipotiroidismo/inducido químicamente , Hipotiroidismo/complicaciones , Hipotiroidismo/tratamiento farmacológico , Potenciación a Largo Plazo , Masculino , Trastornos de la Memoria , Neurogénesis , Plasticidad Neuronal/fisiología , Ratas , Ratas Wistar , Selenito de Sodio/efectos adversos
8.
Neurosci Lett ; 767: 136311, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34743896

RESUMEN

According to the Bienenstock,Cooper, andMunro's (BCM) model, the level of afferent activity regulates the point of crossover from long-term depression (LTD) to long-term potentiation (LTP) of the active synapses. Although experimental results from the hippocampus and visual cortex have supported the BCM theory, it remains unclear whether previous activity of synapses regulates the output of neuron populations in vivo, as expected from the theory. In the present study, we studied the effects of priming stimulations at different frequencies (LFS, 0.5, 1, 2 and 5 Hz) on the magnitude of LTP at synaptic and somatic levels in the dentate gyrus of hippocampal formation. LTP in the dentate gyrus (DG) of LFS-primed or unprimed hippocampal formation was induced by delivering of tetanic stimulation to the perforant pathway (PP) in anesthetized rats. The field excitatory postsynaptic potential (fEPSP) slope and the population spike (PS) amplitude were evaluated to measure the magnitude of LTP. 1 Hz- and 5 Hz- (not 0.5 Hz and 2 Hz) stimulation of the PP led to an early LTD of fEPSP. The LTP of fEPSP was completely inhibited by previously delivering 0.5 Hz and 2 Hz LFS, but instead converted to LTD by 1 Hz LFS. However, none of the frequencies used was able to inhibit the LTP of PS. These results suggest that temporal dynamics which are critical to determine the direction of synaptic plasticity has no impact on the plasticity of neuronal output. We concluded that it is needed to explain why neuronal output does not behave within the framework of the BCM theory.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Animales , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología
9.
Pharmacol Rep ; 73(5): 1303-1314, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34060063

RESUMEN

BACKGROUND: Neural plasticity under physiological condition develops together with normal tau phosphorylation and amyloid precursor protein (APP) processing. Since restoration of PI3-kinase signaling has therapeutic potential in Alzheimer's disease, we investigated plasticity-related changes in tau and APP metabolism by the selective Rho-kinase inhibitor fasudil. METHODS: Field potentials composed of a field excitatory post-synaptic potential (fEPSP) and a population spike (PS) were recorded from a granule cell layer of the dentate gyrus. Plasticity of synaptic strength and neuronal function was induced by strong tetanic stimulation (HFS) and low-frequency stimulation (LFS) patterns. Infusions of saline or fasudil were given for 1 h starting from the application of the induction protocols. Total and phosphorylated tau levels and soluble APPα levels were measured in the hippocampus, which was removed after at least 1 h post-induction period. RESULTS: Fasudil infusion resulted in attenuation of fEPSP slope and PS amplitude in response to both HFS and LFS. Fasudil reduced total tau and phosphorylated tau at residue Thr181 in the HFS-stimulated hippocampus, while Thr231 phosphorylation was reduced by fasudil treatment in the LFS-stimulated hippocampus. Ser416 phosphorylation was increased by fasudil treatment in both HFS- and LFS-stimulated hippocampus. Fasudil significantly increased soluble APPα in LFS-stimulated hippocampus, but not in HFS-stimulated hippocampus. CONCLUSION: In light of our findings, we suggest that increased activity of Rho kinase could trigger a mechanism that goes awry during synaptic plasticity which is reversed by a Rho-kinase inhibitor. Thus, Rho-kinase inhibition might be a therapeutic target in cognitive disorders.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Amiloide/metabolismo , Plasticidad Neuronal/fisiología , Quinasas Asociadas a rho/metabolismo , Proteínas tau/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Masculino , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética , Proteínas tau/genética
10.
Pharmacol Rep ; 73(3): 828-840, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33797746

RESUMEN

BACKGROUND: The present study examined whether inhibition of guanylate cyclase (GC) is associated with the plasticity-related microtubule-stabilizing protein tau phosphorylation in the dentate gyrus (DG) of hippocampal formation. METHODS: To address this issue, methylene blue (MB 50 µM) or saline was infused into the DG starting from the induction of long-term potentiation (LTP) or depression (LTD) for 1 h. Then, protein phosphatase 1 alpha (PP1α), glycogen synthase kinase 3 beta (GSK3ß), and tau total and phosphorylated protein levels were measured in these hippocampi using western blotting. LTP and LTD were induced by application of high- and low-frequency stimulation protocols (HFS and LFS), respectively. 5-min averages of the excitatory postsynaptic potential (EPSP) slopes and population spike amplitudes at the end of recording were averaged to measure the magnitude of LTP or LTD. RESULTS: Low-frequency stimulation protocols was unable to phosphorylate thr181 and thr231epitopes of tau, but possessed kinase activity similar to the HFS in phosphorylation of ser396 and ser416 epitopes. MB infusion during LTD induction attenuated LTD, prevented EPSP/spike dissociation and increased tau phosphorylation at ser396 and ser416 epitopes, without changing tau phosphorylation at thr181 and thr231 epitopes. Neither LTP nor LTP-related tau phosphorylation state was changed by MB infusion. CONCLUSION: Although MB can benefit to stabilize the balance between LTP and LTD, and to fix the increased spike wave discharges, it might trigger deregulation of tau phosphorylation, leading to the development of Alzheimer's disease by a mechanism that goes awry during induction of LTD. Thereby detailed studies to reveal more precise evidence for the use of MB in this disease are needed.


Asunto(s)
Depresión/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Azul de Metileno/farmacología , Fosforilación/efectos de los fármacos , Proteínas tau/metabolismo , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Plasticidad Neuronal/efectos de los fármacos , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
11.
Exp Brain Res ; 239(5): 1627-1637, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33768378

RESUMEN

The molecular mechanisms regulating N-methyl-D-aspartate (NMDA) receptor-dependent synaptic plasticity are complex, and the contribution of Tau protein in the physiological process is not fully understood. Herein, we investigated whether the blockade of NMDA receptor activation might change Tau phosphorylation during long-term potentiation (LTP) and long-term depression (LTD) via contribution of GSK3ß as a major Tau kinase. For this, we recorded two components (synaptic and population spike components) of hippocampal field potential, which is evoked by the stimulation of the perforant pathway with high- and low-frequency stimulation (HFS and LFS). We found under a 20-µl volume of D-AP5 infusion lasting 1 h that,HFS caused significant synaptic depression, whereas LFS induced a synaptic potentiation. Both the HFS and LFS protocols resulted in a significant increase in population spike component but were characterized by a slow increase in amplitude that occurred with the LFS. D-AP5 attenuated HFS-induced population spike potentiation, but augmented LFS-induced population spike potentiation. The enzymatic activity of GSK-3ß was decreased by D-AP5 infusion in the hippocampus, indicating that NMDA receptor activity modulates the enzymatic activity of GSK-3ß. In addition, NMDA receptor blockade reduced tau expression and phosphorylation of tau at Ser416 residue, but not Thr231 residue. These findings confirm previous studies that D-AP5 applied to the DG in vivo blocks HFS-induced LTP, but we further also showed that the same dose of D-AP5 resulted in a slowly rising LFS-induced LTP and HFS-induced LTD. The formation of such an LTP, together with reduced enzymatic activity of GSK-3ß and tau phosphorylation at Ser416 epitope, can make it a candidate mechanism for prevention of taupathies.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Receptores de N-Metil-D-Aspartato , Estimulación Eléctrica , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo , Fosforilación , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas tau
12.
Brain Res ; 1720: 146314, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31288003

RESUMEN

BACKGROUND: According to the free radical theory, a gradual accumulation of the free radicals normally produced in the body underlies the changes associated with aging. Thyroid hormones (THs) are related to oxidative stress not only due to their stimulation of metabolism but also due to their effects on antioxidant mechanisms. Thyroid dysfunction increases with age; thus, changes in TH levels in elderly individuals could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear, based on current evidence regarding synaptic plasticity. METHODS: Hippocampal long-term depression (LTD) and oxidative status in the hippocampus were evaluated at two different ages (2-3 and 12-14 months) in male rats. Rats were administered 0.2 mg/kg/day of l-thyroxine for 21 days starting at postnatal day 40 to induce hyperthyroidism. LTD was induced in the dentate gyrus using low frequency stimulation of the perforant pathway. Spectrophotometry was performed to measure catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels, glutathione peroxidase (GPx) activity, and total nitrite/nitrate (tNOx) and nitric oxide synthase (NOS) levels. RESULTS: A reliable LTD was elicited in young rats with hyperthyroidism, while the same protocol could induce a small magnitude of synaptic LTD in the absence of spike-LTD in control rats. In aged rats, controls did not express LTD, but a significant LTP of spike was induced in the absence of synaptic LTD in hyperthyroid rats. While CAT levels were significantly decreased, MDA levels were increased in the aged groups compared to the corresponding young groups. Young rats with euthyroidism had significantly lower GPx activity than each of the hyperthyroid groups. There was no significant difference in SOD levels among the groups. Compared with aged rats, young rats exhibited a hyperthyroidism-induced decrease in NOS levels. Nevertheless, neither the main effects of age and thyroxine administration nor the interaction between these factors reached significance for tNOx. CONCLUSION: These results indicate that hyperthyroidism-related changes in synaptic plasticity are modulated by aging. This modulation may explain the increased cognitive impairment in this disease at older ages, which probably depends on alterations in NOS levels.


Asunto(s)
Depresión/metabolismo , Hipertiroidismo/fisiopatología , Factores de Edad , Animales , Antioxidantes/farmacología , Catalasa/metabolismo , Giro Dentado/metabolismo , Giro Dentado/fisiología , Depresión/fisiopatología , Radicales Libres , Glutatión/metabolismo , Hipertiroidismo/metabolismo , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Glándula Tiroides/patología , Tiroxina/farmacología
13.
J Mol Neurosci ; 68(4): 647-657, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31069661

RESUMEN

The expression of homosynaptic long-term depression (LTD) governs the subsequent induction of long-term potentiation (LTP) at hippocampal synapses. This process, called metaplasticity, is associated with a transient increase in the levels of several kinases, such as extracellular signal-regulated protein kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and Akt kinase. It has been increasingly realized that the chemical changes in the hippocampus caused by hypothyroidism may be the key underlying causes of the learning deficits, memory loss, and impaired LTP associated with this disease. However, the functional role of thyroid hormones in the "plasticity of synaptic plasticity" has only begun to be elucidated. To address this issue, we sought to determine whether the administration of 6-n-propyl-2-thiouracil (PTU) alters the relationship between priming and the induction of subsequent LTP and related signaling molecules. The activation of ERK1/2, JNK, and Akt was measured in the hippocampus at least 95 min after priming onset. We found that priming stimulation at 5 Hz for 3 s negatively impacted the induction of LTP by subsequent tetanic stimulation in hypothyroid animals, as manifested by a more rapid decrease in the fEPSP slope and population spike amplitude. This phenomenon was accompanied by lower levels of phosphorylated Akt in the surgically removed hippocampus of the hypothyroid rats compared to the euthyroid rats. The metaplastic response and the expression of these proteins in the 1-Hz-primed hippocampus were not different between the two groups. These observations suggest that decreased PI3K/Akt signaling may be involved in the compromised metaplastic regulation of LTP observed in hypothyroidism, which may account for the learning difficulties/cognitive impairments associated with this condition.


Asunto(s)
Hipotiroidismo/metabolismo , Sistema de Señalización de MAP Quinasas , Plasticidad Neuronal , Animales , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Hipocampo/fisiopatología , Hipotiroidismo/etiología , Hipotiroidismo/fisiopatología , MAP Quinasa Quinasa 4/metabolismo , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Propiltiouracilo/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar
14.
Biol Trace Elem Res ; 192(2): 252-262, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30796616

RESUMEN

Among the chemical factors that have been implicated in the etiology of dementia, recent concern has focused on both increased and decreased exposure to the metalloid selenium (Se). This report describes the molecular, behavioral, and electrophysiological analysis of rats that were fed with Se-free chow and Se-enriched tap water for 21 days. Three groups were produced, feeding them on a deficient diet with different Selenium content. Hippocampus-dependent spatial learning was measured using the water maze. Long-term potentiation (LTP) was recorded in the hippocampal dentate gyrus to assess how memory is formed at the cellular level. Hippocampal Se levels were measured in trained rats by using inductively coupled plasma mass spectrometry. Phosphorylated and total tau levels were measured in whole hippocampus by Western blot. An impairment of learning of rats feeding with Se-deficient diet was accompanied by attenuated LTP, and increased ratio of p231Tau-to- and decreased ratio of p416Tau-to-Tau in the non-stimulated hippocampus, despite no significant change was observed in Se levels of hippocampus and plasma. Se supplementation resulted in an increase in both tissues and an increase in the ratio of p231Tau-to-Tau in the non-stimulated hippocampus but did not change learning performance and LTP. Despite impaired learning and LTP, no group differed in probe trial and in the fraction of phosphorylated tau in LTP-induced hippocampus. Reduced level of selenium would probably result in reduced synaptic plasticity as well as impairment of learning ability, suggesting requirement of Se for normal synaptic function.


Asunto(s)
Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Selenio/farmacología , Animales , Suplementos Dietéticos , Hipocampo/metabolismo , Masculino , Ratas , Ratas Wistar , Selenio/administración & dosificación , Selenio/deficiencia
15.
J Mol Neurosci ; 67(2): 193-203, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30498986

RESUMEN

It is well-known that some kinases which are involved in the induction of synaptic plasticity probably modulate tau phosphorylation. However, how depression of potentiated synaptic strength contributes to tau phosphorylation is unclear because of the lack of experiments in which depotentiation of LTP was induced. Field excitatory postsynaptic potential (fEPSP) and population spike (PS) were recorded from the dentate gyrus in response to the perforant pathway stimulation. To induce LTP, high-frequency stimulation (HFS) was used, while, for depotentiation of LTP, low-frequency stimulation (LFS) consisting of 900 pulses at 1 Hz was applied 5 min after tetanization. In some experiments, a neutral protocol at 0.033 Hz was applied throughout the experiment without any induction of synaptic plasticity. One-hertz depotentiation protocol was able to decrease fEPSP slope which was previously increased by HFS, whereas no significant change in fEPSP slope and PS amplitude was observed in neutral protocol experiments. Relative to saline infusion, LTP was lower in magnitude and was more reversed by subsequent LFS in the presence of ERK1/2 inhibitor. Western blot experiments indicated that tau protein was hyperphosphorylated at ser416 epitope but rather hypophosphorylated at thr231 epitope in the whole hippocampus upon depotentiation of LTP. These changes concomitantly occurred with a notable increase in the levels of total tau and in the levels of phosphorylated form of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). ERK1/2 inhibition resulted in a decrease in phosphorylation of tau at p416Tau when ERK1/2 was inhibited. These findings indicate that some forms of long-term plastic changes might be related with epitope-specific tau phosphorylation and ERK1/2 activation in the hippocampus. Therefore, we emphasize that tau may be crucial for physiological learning as well as Alzheimer's disease pathology.


Asunto(s)
Hipocampo/metabolismo , Potenciación a Largo Plazo , Proteínas tau/metabolismo , Secuencias de Aminoácidos , Animales , Potenciales Postsinápticos Excitadores , Hipocampo/fisiología , Masculino , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , Ratas Wistar , Proteínas tau/química
16.
J Neurosci Res ; 95(8): 1621-1632, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27862211

RESUMEN

Although the effects of long-term experimental dysthyroidism on long-term potentiation (LTP) and long-term depression (LTD) have been documented, the relationship between LTP/LTD and acute administration of L-thyroxine (T4) has not been described. Here, we investigated the effects of intra-hippocampal administration of T4 on synaptic plasticity in the dentate gyrus of the hippocampal formation. After a 15-minute baseline recording, LTP and LTD were induced by application of high- and low-frequency stimulation protocols, respectively. Infusions of saline or T4 and tetraiodothyroacetic acid (tetrac), a T4 analog that inhibits binding of iodothyronines to the integrin αvß3 receptor, either alone or together, were made during the stimulation protocols. The averages of the excitatory postsynaptic potential (EPSP) slopes and population spike (PS) amplitudes, between 55 to 60 minutes, were used as a measure of the LTP/LTD magnitude and were analyzed by two-way univariate ANOVA with T4 and tetrac as between-subjects factors. The input-output curves of the infusion groups were comparable to each other, as shown by the non significant interaction observed between stimulus intensity and infused drug. The magnitude of the LTP in T4-infused rats was significantly lower as compared to saline-infused rats. Both the PS amplitude and the EPSP slope were depressed more markedly with T4 infusion than with saline, tetrac, and T4 + tetrac infusion. Data of this study provide in vivo evidence that T4 can promote LTD over LTP via the integrin αvß3 receptor, and that the effect of endogenous T4 on this receptor can be suppressed by tetrac in the hippocampus. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Tiroxina/farmacología , Análisis de Varianza , Animales , Biofisica , Estimulación Eléctrica , Integrina alfa3beta1/metabolismo , Masculino , Ratas , Ratas Wistar , Tiroxina/análogos & derivados
17.
Med Sci Monit ; 22: 4587-4595, 2016 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-27889788

RESUMEN

BACKGROUND Myocardial ischemia and reperfusion lead to impairment of electrolyte balance and, eventually, lethal arrhythmias. The aim of this study was to investigate the effects of pharmacological inhibition of angiotensin-II (Ang-II) production on heart tissue with ischemia-reperfusion damage, arrhythmia, and oxidative stress. MATERIAL AND METHODS Rats were divided into 4 groups: only ischemia/reperfusion (MI/R), captopril (CAP), aliskiren (AL), and CAP+AL. The drugs were given by gavage 30 min before anesthesia. Blood pressure and electrocardiography (ECG) were recorded during MI/R procedures. The heart tissue and plasma was kept so as to evaluate the total oxidant (TOS), antioxidant status (TAS), and creatine kinase-MB (CK-MB). RESULTS Creatine kinase-MB was not different among the groups. Although TAS was not affected by inhibition of Ang-II production, TOS was significantly lower in the CAP and/or AL groups than in the MI/R group. Furthermore, oxidative stress index was significantly attenuated in the CAP and/or AL groups. Captopril significantly increased the duration of VT during ischemia; however, it did not have any effect on the incidence of arrhythmias. During reperfusion periods, aliskiren and its combinations with captopril significantly reduced the incidence of other types of arrhythmias. Captopril alone had no effect on the incidence of arrhythmias, but significantly increased arrhythmias score and durations of arrhythmias during reperfusion. MAP and heart rate did not show changes in any groups during ischemic and reperfusion periods. CONCLUSIONS Angiotensin-II production appears to be associated with elevated levels of reactive oxygen species, but Ang-II inhibitions increases arrhythmia, mainly by initiating ventricular ectopic beats.


Asunto(s)
Angiotensina II/biosíntesis , Arritmias Cardíacas/metabolismo , Corazón/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Amidas/farmacología , Angiotensina II/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Antihipertensivos/farmacología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Presión Sanguínea/efectos de los fármacos , Captopril/farmacología , Forma MB de la Creatina-Quinasa/metabolismo , Fumaratos/farmacología , Corazón/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Daño por Reperfusión Miocárdica/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Ratas
18.
Neuroreport ; 27(11): 802-8, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27258653

RESUMEN

Given evidence that mitogen-activated protein kinase (MAPK) activation is part of the nongenomic actions of thyroid hormones, we investigated the possible consequences of hyperthyroidism for the cognitive functioning of adult rats. Young adult rats were treated with L-thyroxine or saline. Twenty rats in each group were exposed to Morris water maze testing, measuring their performance in a hidden-platform spatial task. In a separate set of rats not exposed to Morris water maze testing (untrained rats), the expression and phosphorylated levels of p38-MAPK and of its two downstream effectors, Elk-1 and cAMP response element-binding protein, were evaluated using quantitative reverse transcriptase-PCR and western blotting. Rats with hyperthyroidism showed delayed acquisition of learning compared with their wild-type counterparts, as shown by increased escape latencies and distance moved on the last two trials of daily training in the water maze. The hyperthyroid rats, however, showed no difference during probe trials. Western blot analyses of the hippocampus showed that hyperthyroidism increased phosphorylated p38-MAPK levels in untrained rats. Although our study is correlative in nature and does not exclude the contribution of other molecular targets, our findings suggest that the observed impairments in acquisition during actual learning in rats with hyperthyroidism may result from the increased phosphorylation of p38-MAPK.


Asunto(s)
Hipertiroidismo/complicaciones , Discapacidades para el Aprendizaje/etiología , Sistema de Señalización de MAP Quinasas/fisiología , Aprendizaje Espacial/fisiología , Animales , Proteína de Unión a CREB/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipertiroidismo/patología , Masculino , Aprendizaje por Laberinto , Recuerdo Mental/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Tiempo de Reacción , Tiroxina/toxicidad , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Neuroreport ; 27(9): 640-6, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27128724

RESUMEN

Long-term potentiation and long-term depression (LTD) are cellular mechanisms of learning and memory in the mammalian brain. We have previously shown that adult hyperthyroid rats showed a delay in the acquisition of a place learning task and attenuated long-term potentiation. However, changes in LTD in hyperthyroidism remain unclear. Rats were administered 0.2 mg/kg/day of L-thyroxine for 21 days starting at postnatal day 40 to induce hyperthyroidism. LTD was induced in the dentate gyrus using low-frequency stimulation (LFS) of the perforant pathway. The mRNA expressions of p38 mitogen-activated protein kinase (p38-MAPK) and protein phosphatase 1 (PP1) were evaluated using a quantitative reverse transcriptase PCR. In control rats, a standard LFS protocol induced a slight depression of the population spike (PS) amplitude during the induction phase of LTD (76±13% vs. baseline), but a small potentiation of the PS amplitude was observed in the early (107±18%) and late (111±20%) phases of LTD. Interestingly, in the hyperthyroid rats, the same LFS protocol induced a reliable LTD in the dentate gyrus of the hippocampus as evidenced by a marked depression in the PS amplitude during the induction (54±6% vs. baseline) and the early phases (56±8%) of LTD. Elevated mRNA levels of p38-MAPK and PP1 were observed in the hippocampus of the LFS-treated hyperthyroid rats compared with the hippocampus of the vehicle-treated hyperthyroid rats. No significant change in p38-MAPK or PP1 mRNA expression was observed in the euthyroid rats. The present study shows that a standard LFS protocol can induce a durable depression of synaptic strength and an upregulation of PP1 and p38-MAPK mRNA in hyperthyroid rats. We conclude that hyperthyroidism can induce molecular changes associated with degeneration of the hippocampus. The relationship between the levels of thyroid hormone and dementia requires further investigation.


Asunto(s)
Giro Dentado/fisiopatología , Estimulación Eléctrica/métodos , Hipertiroidismo/terapia , Depresión Sináptica a Largo Plazo/fisiología , Proteína Fosfatasa 1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Biofisica , Giro Dentado/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hipertiroidismo/inducido químicamente , Hipertiroidismo/patología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Proteína Fosfatasa 1/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Tiroxina/toxicidad , Proteínas Quinasas p38 Activadas por Mitógenos/genética
20.
Med Sci Monit ; 22: 1013-21, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-27019222

RESUMEN

BACKGROUND: Adriamycin (ADR) is a drug used clinically for anticancer treatment; however, it causes adverse effects in the liver. The mechanism by which these adverse effects occur remains unclear, impeding efforts to enhance the therapeutic effects of ADR. Its hepatotoxicity might be related to increasing reactive oxygen species (ROS) and mitochondrial dysfunction. The interaction between ADR and the local renin-angiotensin system (RAS) in the liver is unclear. ADR might activate the RAS. Angiotensin-II (Ang-II) leads to ROS production and mitochondrial dysfunction. In the present study we investigated whether ADR's hepatotoxicity interacts with local RAS in causing oxidative stress resulting from mitochondrial dysfunction in the rat liver. MATERIAL/METHODS: Rats were divided into 5 groups: control, ADR, co-treated ADR with captopril, co-treated ADR with Aliskiren, and co-treated ADR with both captopril and Aliskiren. Mitochondria and cytosol were separated from the liver, then biochemical measurements were made from them. Mitochondrial membrane potential (MMP) and ATP levels were evaluated. RESULTS: ADR remarkably decreased MMP and ATP in liver mitochondria (p<0.05). Co-administration with ADR and Aliskiren and captopril improved the dissipation of MMP (p<0.05). The decreased ATP level was restored by treatment with inhibitors of ACE and renin. CONCLUSIONS: Angiotensin-II may contribute to hepatotoxicity of in the ADR via mitochondrial oxidative production, resulting in the attenuation of MMP and ATP production.


Asunto(s)
Angiotensina II/farmacología , Doxorrubicina/efectos adversos , Hígado/metabolismo , Hígado/patología , Mitocondrias Hepáticas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Citosol/efectos de los fármacos , Citosol/metabolismo , Hígado/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...