Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 12(19): e70019, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39358834

RESUMEN

In the present scenario, obesity is a challenging health problem and its prevalence along with comorbidities are on the rise around the world. Ingestion of fish becomes trendy in daily meals. Recent research has shown that marine fish oil (FO) (found in tuna, sardines, and mackerel) may offer an alternative method for reducing obesity and problems associated with it. Marine FO rich in long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) and long-chain omega-6 polyunsaturated fatty acids (LC n-6 PUFA) plays an important role in reducing abnormalities associated with the metabolic syndrome and has a variety of disease-fighting properties, including cardioprotective activity, anti-atherosclerotic, anti-obesity, anti-cancer, anti-inflammatory activity. Studies in rodents and humans have indicated that LC n-3 PUFA potentially elicit a number of effects which might be useful for reducing obesity, including suppression of appetite, improvements in circulation, enhanced fat oxidation, energy expenditure, and reduced fat deposition. This review discusses the interplay between inflammation and obesity, and their subsequent regulation via the beneficial role of marine FO, suggesting an alternative dietary strategy to ameliorate obesity and obesity-associated chronic diseases.


Asunto(s)
Aceites de Pescado , Obesidad , Humanos , Animales , Aceites de Pescado/uso terapéutico , Aceites de Pescado/administración & dosificación , Aceites de Pescado/farmacología , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Ácidos Grasos Omega-3/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/prevención & control
2.
Chemistry ; 30(59): e202402162, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39133892

RESUMEN

An efficient approach for the synthesis of substituted aryl naphthoquinones via a Pd(II)-catalyzed template-assisted m-C(sp2)-H bond functionalization reaction of arylmethane sulfonates have been demonstrated. The method involves usage of less expensive and abundant pharmacologically important scaffold naphthoquinone. A wide range of arylmethane sulfonates were examined and found to be compatible with the protocol. The protocol has also been further extended to the synthesis of various substituted aryl maleimide scaffolds. A plausible reaction mechanism has also been proposed to account for the selective distal m-C(sp2)-H bond functionalization reaction.

3.
J Fluoresc ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180575

RESUMEN

This work focuses on the synthesis of Bentonite supported nano zero valent bimetallic nanoparticles (B/nZVCu-M NPs) to be utilized for fast and highly sensitive, reversible, fluorescent determination of dopamine (DA) in the presence of dopamine, other biomolecules and ions. The X-ray Photoelectron Spectroscopy(XPS), Powder X-Ray Diffraction(PXRD) and Scanning Electron Microscopy(SEM) revealed the formation of nanoparticles with size ranging from 15 to 20 nm. The composition was revealed by Fourier Transform Infrared(FTIR) Spectoscopy and Energy Dispersive X-Ray (EDX) Analysis. The Limits of Detection(LOD) were noted to be 5.57nM and 6.07nM. The binding of DA is noted to be reversible with respect to EDTA2-. Furthermore, the developed sensor exhibited good repeatability, satisfactory long-term stability, and was successfully used for the selective detection of dopamine sample with desired recoveries or reversibilities. The main aim of our work is to selectively detect dopamine in presence of its major interferents and biomolecules that are normally present/ co-exist with dopamine in biological systems.

4.
World J Microbiol Biotechnol ; 40(6): 168, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630156

RESUMEN

Obesity is a growing epidemic worldwide. Several pharmacologic drugs are being used to treat obesity but these medicines exhibit side effects. To find out the alternatives of these drugs, we aimed to assess the probiotic properties and anti-obesity potentiality of a lactic acid bacterium E2_MCCKT, isolated from a traditional fermented rice beverage, haria. Based on the 16S rRNA sequencing, the bacterium was identified as Lactiplantibacillus plantarum E2_MCCKT. The bacterium exhibited in vitro probiotic activity in terms of high survivability in an acidic environment and 2% bile salt, moderate auto-aggregation, and hydrophobicity. Later, E2_MCCKT was applied to obese mice to prove its anti-obesity potentiality. Adult male mice (15.39 ± 0.19 g) were randomly divided into three groups (n = 5) according to the type of diet: normal diet (ND), high-fat diet (HFD), and HFD supplemented with E2_MCCKT (HFT). After four weeks of bacterial treatment on the obese mice, a significant reduction of body weight, triglyceride, and cholesterol levels, whereas, improvements in serum glucose levels were observed. The bacterial therapy led to mRNA up-regulation of lipolytic transcription factors such as peroxisome proliferator-activated receptor-α which may increase the expression of fatty acid oxidation-related genes such as acyl-CoA oxidase and carnitine palmitoyl-transferase-1. Concomitantly, both adipocytogenesis and fatty acid synthesis were arrested as reflected by the down-regulation of sterol-regulatory element-binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase genes. In protein expression study, E2_MCCKT significantly increased IL-10 expression while decreasing pro-inflammatory cytokine (IL-1Ra and TNF-α) expression. In conclusion, the probiotic Lp. plantarum E2_MCCKT might have significant anti-obesity effects on mice.


Asunto(s)
Dieta Alta en Grasa , Obesidad , Masculino , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , ARN Ribosómico 16S/genética , Ácidos Grasos
5.
J Appl Biomed ; 22(1): 49-58, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38505970

RESUMEN

We have extracted and characterized Phasa fish (Setipinna phasa) oil for the first time to evaluate the anti-obesity and related anti-inflammatory effects on obese mice. Inbred male albino BALB/c mice were segregated into three categories: control (C), Obese control group (OC), and Phasa fish oil treated group (TX). To establish the potentiality of Setipinna phasa oil for its anti-obesity and anti-inflammatory properties, it was extracted and characterized using GC-MS method. To evaluate the anti-obesity effect, different parameters were considered, such as body weight, lipid composition, obesity, and obesity associated inflammation. The physicochemical characteristics of Phasa fish oil revealed that the oil quality was good because acid value, peroxide value, p-anisidine value, Totox value, refractive index, and saponification value were within the standard value range. The GC-MS study explored the presence of fatty acids beneficial to health such as Hexadec-9-enoic acid; Octadec-11-enoic acid; EPA, DHA, Methyl Linolenate, etc. The application of Setipinna phasa oil on the treated mice group acutely lowered body weight and serum lipid profile compared to the obese group. In connection with this, leptin, FAS, and pro-inflammatory cytokines TNF-α genes expression were downregulated in the treated group compared to the obese group. The Phasa oil treated group had an elevated expression of PPAR-α, adiponectin, LPL gene, and anti-inflammatory markers IL-10 and IL-1Ra compared to the obese group. This study suggests that Phasa fish oil, enriched with essential fatty acid, might be used as an anti-obesity and anti-inflammatory supplement.


Asunto(s)
Dieta Alta en Grasa , Obesidad , Masculino , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos BALB C , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Aceites de Pescado/farmacología , Aceites de Pescado/uso terapéutico , Peso Corporal , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
6.
Cell Mol Life Sci ; 81(1): 33, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214819

RESUMEN

P38γ (MAPK12) is predominantly expressed in triple negative breast cancer cells (TNBC) and induces stem cell (CSC) expansion resulting in decreased survival of the patients due to metastasis. Abundance of G-rich sequences at MAPK12 promoter implied the functional probability to reverse tumorigenesis, though the formation of G-Quadruplex (G4) structures at MAPK12 promoter is elusive. Here, we identified two evolutionary consensus adjacent G4 motifs upstream of the MAPK12 promoter, forming parallel G4 structures. They exist in an equilibria between G4 and duplex, regulated by the binding turnover of Sp1 and Nucleolin that bind to these G4 motifs and regulate MAPK12 transcriptional homeostasis. To underscore the gene-regulatory functions of G4 motifs, we employed CRISPR-Cas9 system to eliminate G4s from TNBC cells and synthesized a naphthalene diimide (NDI) derivative (TGS24) which shows high-affinity binding to MAPK12-G4 and inhibits MAPK12 transcription. Deletion of G4 motifs and NDI compound interfere with the recruitment of the transcription factors, inhibiting MAPK12 expression in cancer cells. The molecular basis of NDI-induced G4 transcriptional regulation was analysed by RNA-seq analyses, which revealed that MAPK12-G4 inhibits oncogenic RAS transformation and trans-activation of NANOG. MAPK12-G4 also reduces CD44High/CD24Low population in TNBC cells and downregulates internal stem cell markers, arresting the stemness properties of cancer cells.


Asunto(s)
G-Cuádruplex , Proteína Quinasa 12 Activada por Mitógenos , Neoplasias de la Mama Triple Negativas , Humanos , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Neoplasias de la Mama Triple Negativas/genética , Proteína Quinasa 12 Activada por Mitógenos/genética
7.
ACS Pharmacol Transl Sci ; 7(1): 195-211, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38230291

RESUMEN

Sulforaphane, a naturally occurring isothiocyanate, has gained attention due to its tremendous anticancer potential. Thus, an array of sulforaphane analogs were synthesized and evaluated for their cytotoxic potentials on a wide range of malignant cell lines. Among these derivatives, compound 4a displayed exceptional potency in inhibiting the proliferation of cancer cell lines and a negligible effect on normal cell lines through G2/M phase arrest. The lead compound induced reactive oxygen species (ROS)-mediated mitochondrial dysfunction, leading to apoptosis. Further mechanistic studies established the interaction of the compound 4a with the insulin-like growth factor-1 receptor (IGF-R1) and blocking of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (PKB/Akt) pathway. This led to suppression of nuclear factor erythroid 2-related factor 2 (NRF-2) protein expression, thus increasing the free radicals in the tumor cells. Moreover, compound 4a induced ROS-mediated caspase-independent apoptosis. Finally, compound 4a reduced tumor progression in a 4T1 injected BALB/c syngeneic mice tumor model. In conclusion, this study summarizes the mechanism of compound 4a-mediated ROS-mediated caspase-independent apoptosis. According to the study's findings, compound 4a can be used as a powerful new anticancer agent to enhance cancer treatment.

8.
Blood ; 143(2): 105-117, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832029

RESUMEN

ABSTRACT: Elevated circulating fibrinogen levels correlate with increased risk for both cardiovascular and venous thromboembolic diseases. In vitro studies show that formation of a highly dense fibrin matrix is a major determinant of clot structure and stability. Here, we analyzed the impact of nonpolymerizable fibrinogen on arterial and venous thrombosis as well as hemostasis in vivo using FgaEK mice that express normal levels of a fibrinogen that cannot be cleaved by thrombin. In a model of carotid artery thrombosis, FgaWT/EK and FgaEK/EK mice were protected from occlusion with 4% ferric chloride (FeCl3) challenges compared with wild-type (FgaWT/WT) mice, but this protection was lost, with injuries driven by higher concentrations of FeCl3. In contrast, fibrinogen-deficient (Fga-/-) mice showed no evidence of occlusion, even with high-concentration FeCl3 challenge. Fibrinogen-dependent platelet aggregation and intraplatelet fibrinogen content were similar in FgaWT/WT, FgaWT/EK, and FgaEK/EK mice, consistent with preserved fibrinogen-platelet interactions that support arterial thrombosis with severe challenge. In an inferior vena cava stasis model of venous thrombosis, FgaEK/EK mice had near complete protection from thrombus formation. FgaWT/EK mice also displayed reduced thrombus incidence and a significant reduction in thrombus mass relative to FgaWT/WT mice after inferior vena cava stasis, suggesting that partial expression of nonpolymerizable fibrinogen was sufficient for conferring protection. Notably, FgaWT/EK and FgaEK/EK mice had preserved hemostasis in multiple models as well as normal wound healing times after skin incision, unlike Fga-/- mice that displayed significant bleeding and delayed healing. These findings indicate that a nonpolymerizable fibrinogen variant can significantly suppress occlusive thrombosis while preserving hemostatic potential in vivo.


Asunto(s)
Hemostáticos , Trombosis , Trombosis de la Vena , Animales , Ratones , Fibrinógeno/metabolismo , Hemostasis , Trombosis de la Vena/genética , Trombosis de la Vena/metabolismo , Trombosis/metabolismo , Plaquetas/metabolismo
9.
Nutr Neurosci ; 27(3): 271-288, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36947578

RESUMEN

OBJECTIVES: In this study mice were fed a high-fat diet for 12 weeks to establish diet-induced obesity and syringic acid (SA) was assessed for anti-obese, neuroprotective, and neurogenesis. METHOD: Animals were given HFD for 12 weeks to measure metabolic characteristics and then put through the Barns-maze and T-maze tests to measure memory. Additionally, the physiology of the blood-brain barrier, oxidative stress parameters, the expression of inflammatory genes, neurogenesis, and histopathology was evaluated in the brain. RESULT: DIO raised body weight, BMI, and other metabolic parameters after 12 weeks of overfeeding. A reduced spontaneous alternation in behavior (working memory, reference memory, and total time to complete a task), decreased enzymatic and non-enzymatic antioxidants, oxidative biomarkers, increased neurogenesis, and impaired blood-brain barrier were all seen in DIO mice. SA (50 mg/kg) treatment of DIO mice (4 weeks after 8 weeks of HFD feeding) reduced diet-induced changes in lipid parameters associated with obesity, hepatological parameters, memory, blood-brain barrier, oxidative stress, neuroinflammation, and neurogenesis. SA also reduced the impact of malondialdehyde and enhanced the effects of antioxidants such as glutathione, superoxide dismutase (SOD), and total thiol (MDA). Syringic acid improved neurogenesis, cognition, and the blood-brain barrier while reducing neurodegeneration in the hippocampal area. DISCUSSION: According to the results of the study, syringic acid therapy prevented neurodegeneration, oxidative stress, DIO, and memory loss. Syringic acid administration may be a useful treatment for obesity, memory loss, and neurogenesis, but more research and clinical testing is needed.


Asunto(s)
Ácido Gálico/análogos & derivados , Obesidad , Sobrepeso , Ratones , Animales , Obesidad/etiología , Obesidad/prevención & control , Obesidad/tratamiento farmacológico , Encéfalo/metabolismo , Antioxidantes/farmacología , Dieta Alta en Grasa/efectos adversos , Estrés Oxidativo , Trastornos de la Memoria , Neurogénesis/fisiología
10.
Mol Oncol ; 18(1): 113-135, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37971174

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRasG12D , TRP53R172H ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors. Notably, plasminogen-deficient mice (Plg- ) had significantly diminished KPC tumor growth in subcutaneous and orthotopic implantation models. Moreover, the metastatic potential of KPC cells was significantly diminished in Plg- mice, which was linked to reduced early adhesion and/or survival of KPC tumor cells. The reduction in primary orthotopic KPC tumor growth in Plg- mice was associated with increased apoptosis, reduced accumulation of pro-tumor immune cells, and increased local proinflammatory cytokine production. Elimination of fibrin(ogen), the primary proteolytic target of plasmin, did not alter KPC primary tumor growth and resulted in only a modest reduction in metastatic potential. In contrast, deficiencies in the plasminogen receptors Plg-RKT or S100A10 in tumor cells significantly reduced tumor growth. Plg-RKT reduction in tumor cells, but not reduced S100A10, suppressed metastatic potential in a manner that mimicked plasminogen deficiency. Finally, tumor growth was also reduced in NSG mice subcutaneously or orthotopically implanted with patient-derived PDAC tumor cells in which circulating plasminogen was pharmacologically reduced. Collectively, these studies suggest that plasminogen promotes PDAC tumor growth and metastatic potential, in part through engaging plasminogen receptors on tumor cells.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Fibrinolisina , Neoplasias Pancreáticas/patología , Plasminógeno
11.
Curr Res Toxicol ; 5: 100135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033659

RESUMEN

Chronic kidney diseases (CKD) caused by acute kidney injury (AKI) results rapid and reversible loss in renal function. A real-time, highly accurate, and sensitive acute kidney injury biomarker is urgently required in order to keep these patients alive and prevent end stage renal disease and related complications that include hypertension, fluid and electrolyte retention, metabolic acidosis, anemia, stroke etc. This study was designed to develop a specific and sensitive model for the early identification of renal damage in male albino rats. Using a single intraperitoneal dose of cisplatin (10 mg/kg body weight) to the rats, the various duration-dependent nephrotoxic activities were compared using multiple physiological, biochemical, genomic, and histopathological markers. We looked into when renal dysfunction would start occurring after receiving a single high dose of cisplatin while blood urea nitrogen (BUN) and serum creatinine (sCr) remained normal. Following a single cisplatin injection, various measurements were taken in plasma, urine, and/or kidney tissues of rats euthanized on days 1, 2, 3, 5, and 7. When the urine kidney injury molecule (KIM-1), interleukine 18 (IL-18), nephrin, neutrophil gelatinase-associated lipocalin (NGAL) and serum cystatin C (Cys C) levels are greatly raised on day 3 after cisplatin treatment, BUN and sCr levels remain normal. Nephrotoxicity of cisplatin is also indicated by the upregulated mRNA expression of KIM-1, IL-18, Cys C, and NGAL and downregulated expression of nephrin in kidney tissue at very initial stage. Protein expression of KIM-1, IL-18 and NGAL level of kidney tissues was upregulated indicated confirmatory results done by western blot. Utilising an array of kidney impairment indicators has emerged as an earlier, more effective, and more reliable technique to diagnose AKI when compared to the most sophisticated signs now available.

12.
Org Lett ; 25(34): 6305-6310, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37606577

RESUMEN

An efficient method for the synthesis of bicyclic spirodiamine molecules via ß-C(sp3)-H bond activation of aliphatic amides, followed by cyclization with maleimides, has been developed. The reaction proceeds through an amide-directed ß-C(sp3)-H bond activation of alkyl amides and subsequent cyclization with maleimides. The methodology is highly compatible with a wide variety of maleimides. Amides derived from biologically active aliphatic and fatty acids were also found to be highly compatible with the protocol. A palladacycle was synthesized and found to be the active intermediate in this reaction. A plausible reaction mechanism was also proposed to account for this spirocyclization.

13.
Sci Rep ; 13(1): 14125, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644076

RESUMEN

The implication of inflammation in the pathophysiology of several types of cancers has been under intense investigation. Conjugated fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. In this paper, we evaluated the efficacy of new conjugated fatty acids isolated from marine Opisthopterus tardoore (Tapra fish) in human breast cancer cell lines MCF-7. Linoelaidic acid, a marine fish (O. tardoore) derived unsaturated fatty acids, showed effective anticancer activity against MCF-7. Cell viability (MTT) assay revealed a dose-dependent decline in cancer cell viability. It was noteworthy that 5 µM linoelaidic acid decreased the MCF-7 cell viability by 81.82%. Besides that, linoelaidic acid significantly (P< 0.05) increased the level of tumor necrosis factor-α (TNF-α) and interleukin-1 receptor antagonist (IL-1ra) studied by ELISA. Not only that, linoelaidic acid significantly decreased the reduced glutathione level and increased the oxidized glutathione level in MCF-7 cells indicating the oxidative stress inside the cell. Two different cell staining methods with acridine orange-ethidium bromide and DAPI confirmed that the linoelaidic acid rendered their detrimental effect on cancer cells. To decipher the mode of apoptosis Western blotting was performed in which the expression pattern of several proteins (p53, IL-10, and IL-1ra) established the apoptosis in the studied cell lines after linoelaidic acid exposure. Hence it may be conferred that linoelaidic acid has prompt anticancer activity. Therefore this drug can be used further for the treatment of cancer.


Asunto(s)
Grasas Insaturadas en la Dieta , Ácido Linoleico , Humanos , Células MCF-7 , Especies Reactivas de Oxígeno , Proteína Antagonista del Receptor de Interleucina 1 , Muerte Celular , Ácidos Grasos , Caspasas
14.
ACS Appl Bio Mater ; 6(8): 3266-3277, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37556766

RESUMEN

Nitric oxide (NO) is a ubiquitous messenger molecule playing a key role in various physiological and pathological processes. However, producing a selective turn-on fluorescence response to NO is a challenging task due to (a) the very short half-life of NO (typically in the range of 0.1-10 s) in the biological milieu and (b) false positive responses to reactive carbonyl species (RCS) (e.g., dehydroascorbic acid and methylglyoxal etc.) and some other reactive oxygen/nitrogen species (ROS/RNS), especially with o-phenylenediamine (OPD) based fluorosensors. To avoid these limitations, NO sensors should be designed in such a way that they react spontaneously with NO to give turn-on response within the time frame of t1/2 (typically in the range of 0.1-10 s) of NO and λem in the visible wavelength along with good cell permeability to achieve biocompatibility. With these views in mind, a N-nitrosation based fluorescent sensor, NDAQ, has been developed that is highly selective to NO with ∼27-fold fluorescence enhancement at λem = 542 nm with high sensitivity (LOD = 7 ± 0.4 nM) and shorter response time, eliminating the interference of other reactive species (RCS/ROS/RNS). Furthermore, all the photophysical studies with NDAQ have been performed in 98% aqueous medium at physiological pH, indicating its good stability under physiological conditions. The kinetic assay illustrates the second-order dependency with respect to NO concentration and first-order dependency with respect to NDAQ concentration. The biological studies reveal the successful application of the probe to track both endogenous and exogenous NO in living organisms.


Asunto(s)
Óxido Nítrico , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Nitrosación , Fluorescencia , Oxígeno
15.
Indian J Ophthalmol ; 70(12): 4146-4151, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36453303

RESUMEN

Purpose: To assess the association between radial peripapillary capillary (RPC) plexus using optical coherence tomography angiography (OCTA) and retinal nerve fibre layer (RNFL) thickness using spectral domain OCT (SD-OCT) in primary open-angle glaucoma (POAG) patients, glaucoma suspects, and healthy subjects. Methods: In this single-centre cross-sectional observational study, POAG, glaucoma suspects, and healthy patients underwent OCT-RNFL and optic nerve head angiography scans. The RNFL thickness and the vascular parameters obtained from RPC plexus, including perfusion density (PD), flux index (FI), and vessel density (VD), were analysed. Results: In all, 120 eyes of 120 patients, including 40 POAG patients, 40 glaucoma suspects, and 40 healthy subjects, were included. The pairwise comparison of mean RNFL thickness, FI, and VD showed significant difference (P < 0.001) in all sectors between POAG, glaucoma suspects, and healthy eyes. However, PD showed no significant difference between glaucoma suspects and healthy eyes. The average RNFL thickness was found to have a better diagnostic ability than VD to distinguish POAG eyes from healthy eyes and glaucoma suspects based on receiver operating characteristics curve and area under the curve. VD had better diagnostic accuracy than RNFL when glaucoma suspects and healthy were compared. Conclusion: OCT-RNFL has better diagnostic capability in differentiating glaucoma from healthy eyes compared to OCTA. However, OCTA was found to be better in screening out glaucoma suspects from healthy eyes. The VD is a better OCTA parameter than FI and PD to differentiate POAG and glaucoma suspects from healthy eyes.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Hipertensión Ocular , Humanos , Tomografía de Coherencia Óptica , Voluntarios Sanos , Estudios Transversales , Glaucoma de Ángulo Abierto/diagnóstico , Angiografía , Retina , Fibras Nerviosas
16.
ACS Appl Bio Mater ; 5(12): 5854-5864, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36441947

RESUMEN

Abnormal levels (high/low) of urinary human serum albumin (HSA) are associated with a number of diseases and thus act as an essential biomarker for quick therapeutic monitoring and biomedical diagnosis, entailing the urgent development of an effective chemosensor to quantify the albumin levels. Herein, we have rationally designed and developed a small fluorogenic molecular probe, (Z)-2-(5-((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl) methylene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid (HJRA) with a twisted intramolecular charge transfer (TICT) property, which can easily self-assemble into nonfluorescent nanoaggregates in aqueous solution. However, HJRA nanoaggregates can selectively bind with serum albumin proteins (HSA/BSA) in ∼100% PBS medium, thereby facilitating the disassembly of nanoaggregates into monomers, exhibiting a clear turn-on red fluorescent response toward HSA and BSA. Analysis of the specific binding mechanism between HJRA and HSA using a site-selective fluorescence displacement assay and molecular docking simulations indicates that a variety of noncovalent interactions are responsible for the disassembly of nanoaggregates with the concomitant trapping of the HJRA monomer at site I in HSA, yielding a substantial red emission caused by the inhibition of intramolecular rotation of HJRA probe inside the hydrophobic cavity of HSA. The limit of detection (LOD) determined by the 3σ/slope method was found to be 1.13 nM, which is substantially below the normal HSA concentration level in healthy urine, signifying the very high sensitivity of the probe toward HSA. The comparable results and quick response toward quantification of HSA in urine by HJRA with respect to the Bradford method clearly point toward the superiority of this method compared to the existing ones and may lead to biomedical applications for HSA quantification in urine. It may also find potential application in live-cell imaging of HSA.


Asunto(s)
Colorantes Fluorescentes , Albúmina Sérica , Humanos , Albúmina Sérica/análisis , Simulación del Acoplamiento Molecular , Colorantes Fluorescentes/química , Albúmina Sérica Humana/análisis , Espectrometría de Fluorescencia/métodos
17.
J Org Chem ; 87(19): 13154-13167, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36094897

RESUMEN

An efficient synthesis of aryl-substituted quinones via Pd(II)-catalyzed C-H functionalization of less expensive and abundant benzoquinones with aryl acetamides is demonstrated. An auxiliary ligand N,N-bidentate-directing group 8-aminoquinoline plays a crucial role in the success of the reaction. A broad range of substituted phenyl acetamides including commercially available drug molecules were examined and also found to be highly compatible with quinones. The aryl-substituted quinones were also easily converted into aryl-substituted hydroquinone derivatives. A plausible reaction mechanism was proposed to account for the selective distal C-H bond functionalization.


Asunto(s)
Hidroquinonas , Paladio , Acetamidas , Benzoquinonas , Catálisis , Ligandos , Paladio/química , Quinonas
18.
Infect Immun ; 89(7): e0076420, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33820818

RESUMEN

We showed previously that antioxidant enzyme heme oxygenase 1 (HO-1) is critical for Leishmania survival in visceral leishmaniasis. HO-1 inhibits host oxidative burst and inflammatory cytokine production, leading to parasite persistence. In the present study, screening of reported HO-1 transcription factors revealed that infection upregulated (4.1-fold compared to control [P < 0.001]) nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2). Silencing of NRF2 reduced both HO-1 expression and parasite survival. Investigation revealed that infection-induced transient reactive oxygen species (ROS) production dissociated NRF2 from its inhibitor KEAP1 and enabled phosphorylation-dependent nuclear translocation. Both NRF2 and HO-1 silencing in infection increased production of proinflammatory cytokines. But the level was greater in NRF2-silenced cells than in HO-1-silenced ones, suggesting the presence of other targets of NRF2. Another stress responsive transcription factor ATF3 is also induced (4.6-fold compared to control [P < 0.001]) by NRF2 during infection. Silencing of ATF3 reduced parasite survival (59.3% decrease compared to control [P < 0.001]) and increased proinflammatory cytokines. Infection-induced ATF3 recruited HDAC1 into the promoter sites of tumor necrosis factor alpha (TNF-α) and interleukin 12b (IL-12b) genes. Resulting deacetylated histones prevented NF-κB promoter binding, thereby reducing transcription of inflammatory cytokines. Administering the NRF2 inhibitor trigonelline hydrochloride to infected BALB/c mice resulted in reduced HO-1 and ATF3 expression, decreased spleen and liver parasite burdens, and increased proinflammatory cytokine levels. These results suggest that Leishmania upregulates NRF2 to activate both HO-1 and ATF3 for disease progression.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Hemo-Oxigenasa 1/metabolismo , Interacciones Huésped-Patógeno , Leishmania donovani/fisiología , Leishmaniasis Visceral/metabolismo , Leishmaniasis Visceral/microbiología , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Citocinas/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Mediadores de Inflamación/metabolismo , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
19.
Org Biomol Chem ; 18(41): 8450-8458, 2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-33057542

RESUMEN

Fluorescence spectroscopy is a significant bio-analytical technique for specific detection of nitric oxide (NO) and for broadcasting the in vitro and in vivo biological activities of this gasotransmitter. Herein, a benzo-coumarin embedded smart molecular probe (BCM) is employed for NO sensing through detailed fluorescence studies in purely aqueous medium. All the spectroscopic analysis and literature reports clearly validate the mechanistic insight of this sensing strategy i.e., the initial formation of 1,2,3,4-oxatriazole on treatment of the probe with NO which finally converted to its carboxylic acid derivative. This oxatriazole formation results in a drastic enhancement in fluoroscence intensity due to the photoinduced electron transfer (PET) effect. The kinetic investigation unveils the second and first-order dependency on [NO] and [BCM] respectively. The very low detection limit (16 nM), high fluorescence enhancement (123 fold) in aqueous medium and good formation constant (Kf = (4.33 ± 0.48) × 104 M-1) along with pH invariability, non-cytotoxicity, biocompatibility and cell permeability make this probe a very effective one for tracking NO intracellularly.


Asunto(s)
Cumarinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...