Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38701782

RESUMEN

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Asunto(s)
Epigénesis Genética , Vaina de Mielina , Oligodendroglía , Remielinización , Animales , Vaina de Mielina/metabolismo , Humanos , Ratones , Remielinización/efectos de los fármacos , Oligodendroglía/metabolismo , Sistema Nervioso Central/metabolismo , Ratones Endogámicos C57BL , Rejuvenecimiento , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Organoides/metabolismo , Organoides/efectos de los fármacos , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/genética , Diferenciación Celular/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Masculino , Regeneración/efectos de los fármacos , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología
2.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38585774

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a devastating, immensely complex neurodegenerative disease by lack of effective treatments. To date, the challenge to establishing effective treatment for ALS remains formidable, partly due to inadequate translation of existing human genetic findings into actionable ALS-specific pathobiology for subsequent therapeutic development. This study evaluates the feasibility of network medicine methodology via integrating human brain-specific multi-omics data to prioritize drug targets and repurposable treatments for ALS. Using human brain-specific genome-wide quantitative trait loci (x-QTLs) under a network-based deep learning framework, we identified 105 putative ALS-associated genes enriched in various known ALS pathobiological pathways, including regulation of T cell activation, monocyte differentiation, and lymphocyte proliferation. Specifically, we leveraged non-coding ALS loci effects from genome-wide associated studies (GWAS) on brain-specific expression quantitative trait loci (QTL) (eQTL), protein QTLs (pQTL), splicing QTL (sQTL), methylation QTL (meQTL), and histone acetylation QTL (haQTL). Applying network proximity analysis of predicted ALS-associated gene-coding targets and existing drug-target networks under the human protein-protein interactome (PPI) model, we identified a set of potential repurposable drugs (including Diazoxide, Gefitinib, Paliperidone, and Dimethyltryptamine) for ALS. Subsequent validation established preclinical and clinical evidence for top-prioritized repurposable drugs. In summary, we presented a network-based multi-omics framework to identify potential drug targets and repurposable treatments for ALS and other neurodegenerative disease if broadly applied.

3.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38558977

RESUMEN

Spared regions of the damaged central nervous system undergo dynamic remodeling and exhibit a remarkable potential for therapeutic exploitation. Here, lesion-remote astrocytes (LRAs), which interact with viable neurons, glia and neural circuitry, undergo reactive transformations whose molecular and functional properties are poorly understood. Using multiple transcriptional profiling methods, we interrogated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury (SCI). We show that LRAs acquire a spectrum of molecularly distinct, neuroanatomically restricted reactivity states that evolve after SCI. We identify transcriptionally unique reactive LRAs in degenerating white matter that direct the specification and function of local microglia that clear lipid-rich myelin debris to promote tissue repair. Fueling this LRA functional adaptation is Ccn1 , which encodes for a secreted matricellular protein. Loss of astrocyte CCN1 leads to excessive, aberrant activation of local microglia with (i) abnormal molecular specification, (ii) dysfunctional myelin debris processing, and (iii) impaired lipid metabolism, culminating in blunted debris clearance and attenuated neurological recovery from SCI. Ccn1 -expressing white matter astrocytes are specifically induced by local myelin damage and generated in diverse demyelinating disorders in mouse and human, pointing to their fundamental, evolutionarily conserved role in white matter repair. Our findings show that LRAs assume regionally divergent reactivity states with functional adaptations that are induced by local context-specific triggers and influence disorder outcome. Astrocytes tile the central nervous system (CNS) where they serve vital roles that uphold healthy nervous system function, including regulation of synapse development, buffering of neurotransmitters and ions, and provision of metabolic substrates 1 . In response to diverse CNS insults, astrocytes exhibit disorder-context specific transformations that are collectively referred to as reactivity 2-5 . The characteristics of regionally and molecularly distinct reactivity states are incompletely understood. The mechanisms through which distinct reactivity states arise, how they evolve or resolve over time, and their consequences for local cell function and CNS disorder progression remain enigmatic. Immediately adjacent to CNS lesions, border-forming astrocytes (BFAs) undergo transcriptional reprogramming and proliferation to form a neuroprotective barrier that restricts inflammation and supports axon regeneration 6-9 . Beyond the lesion, spared but dynamic regions of the injured CNS exhibit varying degrees of synaptic circuit remodeling and progressive cellular responses to secondary damage that have profound consequences for neural repair and recovery 10,11 . Throughout these cytoarchitecturally intact, but injury-reactive regions, lesion-remote astrocytes (LRAs) intermingle with neurons and glia, undergo little to no proliferation, and exhibit varying degrees of cellular hypertrophy 7,12,13 . The molecular and functional properties of LRAs remain grossly undefined. Therapeutically harnessing spared regions of the injured CNS will require a clearer understanding of the accompanying cellular and molecular landscape. Here, we leveraged integrative transcriptional profiling methodologies to identify multiple spatiotemporally resolved, molecularly distinct states of LRA reactivity within the injured spinal cord. Computational modeling of LRA-mediated heterotypic cell interactions, astrocyte-specific conditional gene deletion, and multiple mouse models of acute and chronic CNS white matter degeneration were used to interrogate a newly identified white matter degeneration-reactive astrocyte subtype. We define how this reactivity state is induced and its role in governing the molecular and functional specification of local microglia that clear myelin debris from the degenerating white matter to promote repair.

4.
Ann Neurol ; 95(5): 907-916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38345145

RESUMEN

OBJECTIVE: Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, whereas those lining gray matter lesions are less studied. Profiling these microglia/macrophages could help to focus therapies on genes or pathways specific to lesion expansion and disease progression. METHODS: We compared the morphology and transcript profiles of microglia/macrophages associated with borders of white matter (WM line) and subpial gray matter lesions (GM line) using laser capture microscopy. We performed RNA sequencing on isolated cells followed by immunocytochemistry to determine the distribution of translational products of transcripts increased in WM line microglia. RESULTS: Cells in the WM line appear activated, with shorter processes and larger cell bodies, whereas those in the GM line appear more homeostatic, with smaller cell bodies and multiple thin processes. Transcript profiling revealed 176 genes in WM lines and 111 genes in GM lines as differentially expressed. Transcripts associated with immune activation and iron homeostasis were increased in WM line microglia, whereas genes belonging to the canonical Wnt signaling pathway were increased in GM line microglia. INTERPRETATION: We propose that the mechanisms of demyelination and dynamics of lesion expansion are responsible for differential transcript expression in WM lines and GM lines, and posit that increased expression of the Fc epsilon receptor, spleen tyrosine kinase, and Bruton's tyrosine kinase, play a key role in regulating microglia/macrophage function at the border of chronic active white matter lesions. ANN NEUROL 2024;95:907-916.


Asunto(s)
Sustancia Gris , Macrófagos , Microglía , Esclerosis Múltiple , Sustancia Blanca , Humanos , Microglía/metabolismo , Microglía/patología , Macrófagos/metabolismo , Macrófagos/patología , Sustancia Gris/patología , Sustancia Gris/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Masculino , Femenino , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Persona de Mediana Edad , Transcriptoma , Adulto , Anciano
5.
Brain ; 147(5): 1871-1886, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38128553

RESUMEN

Multiple sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressive stages of the disease and with ageing, as the environment becomes progressively more hostile. This may be attributable to inhibitory molecules in the multiple sclerosis environment including activation of the p38MAPK family of kinases. We explored oligodendrocyte precursor cell differentiation and myelin repair using animals with conditional ablation of p38MAPKγ from oligodendrocyte precursors. We found that p38γMAPK ablation accelerated oligodendrocyte precursor cell differentiation and myelination. This resulted in an increase in both the total number of oligodendrocytes and the migration of progenitors ex vivo and faster remyelination in the cuprizone model of demyelination/remyelination. Consistent with its role as an inhibitor of myelination, p38γMAPK was significantly downregulated as oligodendrocyte precursor cells matured into oligodendrocytes. Notably, p38γMAPK was enriched in multiple sclerosis lesions from patients. Oligodendrocyte progenitors expressed high levels of p38γMAPK in areas of failed remyelination but did not express detectable levels of p38γMAPK in areas where remyelination was apparent. Our data suggest that p38γ could be targeted to improve myelin repair in multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Vaina de Mielina , Oligodendroglía , Remielinización , Animales , Remielinización/fisiología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Ratones , Oligodendroglía/metabolismo , Oligodendroglía/patología , Humanos , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/genética , Diferenciación Celular/fisiología , Cuprizona/toxicidad , Ratones Endogámicos C57BL , Masculino , Femenino , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Ratones Transgénicos
6.
bioRxiv ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37905110

RESUMEN

Microglia are the resident immune cells of the central nervous system (CNS) and are important regulators of normal brain functions. In CNS demyelinating diseases like multiple sclerosis (MS), the functions of these cells are of particular interest. Here we probed the impact of microRNA (miRNA)-mediated post-transcriptional gene regulation using a mouse model lacking microglia/macrophage-specific Dicer expression during demyelination and remyelination. Conditional Dicer ablation and loss of miRNAs in adult microglia led to extensive demyelination and impaired myelin processing. Interestingly, demyelination was accompanied by increased apoptosis of mature oligodendrocytes (OLs) and arresting OL progenitor cells (OPCs) in the precursor stage. At the transcriptional level, Dicer -deficient microglia led to downregulation of microglial homeostatic genes, increased cell proliferation, and a shift towards a disease-associated phenotype. Loss of remyelination efficiency in these mice was accompanied by stalling of OPCs in the precursor stage. Collectively, these results highlight a new role of microglial miRNAs in promoting a pro-regenerative phenotype in addition to promoting OPC maturation and differentiation during demyelination and remyelination.

7.
J Neuroinflammation ; 20(1): 234, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828609

RESUMEN

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS). Infiltrating inflammatory immune cells perpetuate demyelination and axonal damage in the CNS and significantly contribute to pathology and clinical deficits. While the cytokine interferon (IFN)γ is classically described as deleterious in acute CNS autoimmunity, we and others have shown astrocytic IFNγ signaling also has a neuroprotective role. Here, we performed RNA sequencing and ingenuity pathway analysis on IFNγ-treated astrocytes and found that PD-L1 was prominently expressed. Interestingly, PD-1/PD-L1 antagonism reduced apoptosis in leukocytes exposed to IFNγ-treated astrocytes in vitro. To further elucidate the role of astrocytic IFNγ signaling on the PD-1/PD-L1 axis in vivo, we induced the experimental autoimmune encephalomyelitis (EAE) model of MS in Aldh1l1-CreERT2, Ifngr1fl/fl mice. Mice with conditional astrocytic deletion of IFNγ receptor exhibited a reduction in PD-L1 expression which corresponded to increased infiltrating leukocytes, particularly from the myeloid lineage, and exacerbated clinical disease. PD-1 agonism reduced EAE severity and CNS-infiltrating leukocytes. Importantly, PD-1 is expressed by myeloid cells surrounding MS lesions. These data support that IFNγ signaling in astrocytes diminishes inflammation during chronic autoimmunity via upregulation of PD-L1, suggesting potential therapeutic benefit for MS patients.


Asunto(s)
Antígeno B7-H1 , Encefalomielitis Autoinmune Experimental , Interferón gamma , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Astrocitos/metabolismo , Autoinmunidad , Antígeno B7-H1/metabolismo , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/patología , Inflamación/metabolismo , Interferón gamma/metabolismo , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Enfermedades Neurodegenerativas/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo
8.
Chemistry ; 29(45): e202301501, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37205632

RESUMEN

Antiaromatic molecules have recently received attention because of their intrinsic properties, such as high reactivity and their narrow HOMO-LUMO gaps. Stacking of antiaromatic molecules has been predicted to induce three-dimensional aromaticity via frontier orbital interactions. Here, we report a covalently linked π-π stacked rosarin dimer that has been examined experimentally by steady-state absorption and transient absorption measurements and theoretically by quantum chemical calculations, including time-dependent density functional theory, anisotropy of induced current density, and nucleus-independent chemical shift calculations. Relative to the corresponding monomer, the dimer exhibits diminished antiaromaticity upon lowering the temperature to 77 K, a finding ascribed to intramolecular interactions between the macrocyclic rosarin subunits.

9.
J Immunol ; 210(6): 721-731, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36695771

RESUMEN

Besides antiviral functions, type I IFN expresses potent anti-inflammatory properties and is being widely used to treat certain autoimmune conditions, such as multiple sclerosis. In a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis, administration of IFN-ß effectively attenuates the disease development. However, the precise mechanisms underlying IFN-ß-mediated treatment remain elusive. In this study, we report that IFN-induced protein with tetratricopeptide repeats 2 (Ifit2), a type I and type III IFN-stimulated gene, plays a previously unrecognized immune-regulatory role during autoimmune neuroinflammation. Mice deficient in Ifit2 displayed greater susceptibility to experimental autoimmune encephalomyelitis and escalated immune cell infiltration in the CNS. Ifit2 deficiency was also associated with microglial activation and increased myeloid cell infiltration. We also observed that myelin debris clearance and the subsequent remyelination were substantially impaired in Ifit2-/- CNS tissues. Clearing myelin debris is an important function of the reparative-type myeloid cell subset to promote remyelination. Indeed, we observed that bone marrow-derived macrophages, CNS-infiltrating myeloid cells, and microglia from Ifit2-/- mice express cytokine and metabolic genes associated with proinflammatory-type myeloid cell subsets. Taken together, our findings uncover a novel regulatory function of Ifit2 in autoimmune inflammation in part by modulating myeloid cell function and metabolic activity.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Inflamación , Ratones Endogámicos C57BL , Microglía , Células Mieloides , Repeticiones de Tetratricopéptidos , Interferones/farmacología
10.
Artículo en Inglés | MEDLINE | ID: mdl-36041861

RESUMEN

The classification of multiple sclerosis (MS) has been established by Lublin in 1996 and revised in 2013. The revision includes clinically isolated syndrome, relapsing-remitting, primary progressive and secondary progressive MS, and has added activity (i.e., formation of white matter lesions or clinical relapses) as a qualifier. This allows for the distinction between active and nonactive progression, which has been shown to be of clinical importance. We propose that a logical extension of this classification is the incorporation of additional key pathological processes, such as chronic perilesional inflammation, neuroaxonal degeneration, and remyelination. This will distinguish MS phenotypes that may present as clinically identical but are driven by different combinations of pathological processes. A more precise description of MS phenotypes will improve prognostication and personalized care as well as clinical trial design. Thus, our proposal provides an expanded framework for conceptualizing MS and for guiding development of biomarkers for monitoring activity along the main pathological axes in MS.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Enfermedades del Sistema Nervioso , Biomarcadores , Progresión de la Enfermedad , Humanos , Inflamación , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple Crónica Progresiva/diagnóstico , Esclerosis Múltiple Crónica Progresiva/patología
11.
Front Cell Neurosci ; 16: 918041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783097

RESUMEN

Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identified disease-related transcriptomic alterations; however, their relationship to non-lesioned MS brain regions has not been reported and which could identify prodromal or other disease susceptibility signatures. Here, snRNA-seq was used to generate high-quality RRMS vs. SPMS datasets of 33,197 nuclei from 8 normal-appearing MS brains, which revealed divergent cell type-specific changes. Notably, SPMS brains downregulated astrocytic sphingosine kinases (SPHK1/2) - the enzymes required to phosphorylate and activate the MS drug, fingolimod. This reduction was modeled with astrocyte-specific Sphk1/2 null mice in which fingolimod lost activity, supporting functionality of observed transcriptomic changes. These data provide an initial resource for studies of single cells from non-lesioned RRMS and SPMS brains.

12.
ASN Neuro ; 13: 17590914211042220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34619990

RESUMEN

We have previously shown that two anti-cancer drugs, CX-4945 and MS-275, protect and preserve white matter (WM) architecture and improve functional recovery in a model of WM ischemic injury. While both compounds promote recovery, CX-4945 is a selective Casein kinase 2 (CK2) inhibitor and MS-275 is a selective Class I histone deacetylase (HDAC) inhibitor. Alterations in microRNAs (miRNAs) mediate some of the protective actions of these drugs. In this study, we aimed to (1) identify miRNAs expressed in mouse optic nerves (MONs); (2) determine which miRNAs are regulated by oxygen glucose deprivation (OGD); and (3) determine the effects of CX-4945 and MS-275 treatment on miRNA expression. RNA isolated from MONs from control and OGD-treated animals with and without CX-4945 or MS-275 treatment were quantified using NanoString nCounter® miRNA expression profiling. Comparative analysis of experimental groups revealed that 12 miRNAs were expressed at high levels in MONs. OGD upregulated five miRNAs (miR-1959, miR-501-3p, miR-146b, miR-201, and miR-335-3p) and downregulated two miRNAs (miR-1937a and miR-1937b) compared to controls. OGD with CX-4945 upregulated miR-1937a and miR-1937b, and downregulated miR-501-3p, miR-200a, miR-1959, and miR-654-3p compared to OGD alone. OGD with MS-275 upregulated miR-2134, miR-2141, miR-2133, miR-34b-5p, miR-153, miR-487b, miR-376b, and downregulated miR-717, miR-190, miR-27a, miR-1959, miR-200a, miR-501-3p, and miR-200c compared to OGD alone. Interestingly, miR-501-3p and miR-1959 were the only miRNAs upregulated by OGD, and downregulated by OGD plus CX-4945 and MS-275. Therefore, we suggest that protective functions of CX-4945 or MS-275 against WM injury maybe mediated, in part, through miRNA expression.


Asunto(s)
Antineoplásicos , MicroARNs , Sustancia Blanca , Animales , Antineoplásicos/farmacología , Apoptosis , Glucosa , Ratones , MicroARNs/genética
13.
Ann Clin Transl Neurol ; 8(6): 1279-1291, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33978322

RESUMEN

OBJECTIVE: Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS). Though MS was initially considered to be a white matter demyelinating disease, myelin loss in cortical gray matter has been reported in all disease stages. We previously identified microRNAs (miRNAs) in white matter lesions (WMLs) that are detected in serum from MS patients. However, miRNA expression profiles in gray matter lesions (GMLs) from progressive MS brains are understudied. METHODS: We used a combination of global miRNAs and gene expression profiling of GMLs and independent validation using real-time quantitative polymerase chain reaction (RT-qPCR), immuno-in situ hybridization, and immunohistochemistry. RESULTS: Compared to matched myelinated gray matter (GM) regions, we identified 82 miRNAs in GMLs, of which 10 were significantly upregulated and 17 were significantly downregulated. Among these 82 miRNAs, 13 were also detected in serum and importantly were associated with brain atrophy in MS patients. The predicted target mRNAs of these miRNAs belonged to pathways associated with axonal guidance, TGF-ß signaling, and FOXO signaling. Further, using state-of-the-art human protein-protein interactome network analysis, we mapped the four key GM atrophy-associated miRNAs (hsa-miR-149*, hsa-miR-20a, hsa-miR-29c, and hsa-miR-25) to their target mRNAs that were also changed in GMLs. INTERPRETATION: Our study identifies miRNAs altered in GMLs in progressive MS brains that correlate with atrophy measures. As these miRNAs were also detected in sera of MS patients, these could act as markers of GML demyelination in MS.


Asunto(s)
Perfilación de la Expresión Génica , Sustancia Gris/metabolismo , Sustancia Gris/patología , MicroARNs/metabolismo , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Crónica Progresiva/patología , Mapas de Interacción de Proteínas , Anciano , Atrofia/patología , Femenino , Regulación de la Expresión Génica , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen
14.
PLoS One ; 16(5): e0250486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975330

RESUMEN

Research into the epigenome is of growing importance as a loss of epigenetic control has been implicated in the development of neurodegenerative diseases. Previous studies have implicated aberrant DNA and histone methylation in multiple sclerosis (MS) disease pathogenesis. We have previously reported that the methyl donor betaine is depleted in MS and is linked to changes in histone H3 trimethylation (H3K4me3) in neurons. We have also shown that betaine increases histone methyltransferase activity by activating chromatin bound betaine homocysteine S-methyltransferase (BHMT). Here, we investigated the role of the BHMT-betaine methylation pathway in oligodendrocytes. Immunocytochemistry in the human MO3.13 cell line, primary rat oligodendrocytes, and tissue from MS postmortem brain confirmed the presence of the BHMT enzyme in the nucleus in oligodendrocytes. BHMT expression is increased 2-fold following oxidative insult, and qRT-PCR demonstrated that betaine can promote an increase in expression of oligodendrocyte maturation genes SOX10 and NKX-2.2 under oxidative conditions. Chromatin fractionation provided evidence of a direct interaction of BHMT on chromatin and co-IP analysis indicates an interaction between BHMT and DNMT3a. Our data show that both histone and DNA methyltransferase activity are increased following betaine administration. Betaine effects were shown to be dependent on BHMT expression following siRNA knockdown of BHMT. This is the first report of BHMT expression in oligodendrocytes and suggests that betaine acts through BHMT to modulate histone and DNA methyltransferase activity on chromatin. These data suggest that methyl donor availability can impact epigenetic changes and maturation in oligodendrocytes.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/metabolismo , Betaína/metabolismo , Esclerosis Múltiple/patología , Oligodendroglía/efectos de los fármacos , Animales , Betaína/farmacología , Betaína-Homocisteína S-Metiltransferasa/antagonistas & inhibidores , Betaína-Homocisteína S-Metiltransferasa/genética , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética , Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Metionina/metabolismo , Metilación , Esclerosis Múltiple/genética , Nitroprusiato/farmacología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Factores de Transcripción SOXE/metabolismo
15.
Nat Commun ; 12(1): 1923, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772011

RESUMEN

Chronic demyelination in the human CNS is characterized by an inhibitory microenvironment that impairs recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) leading to failed remyelination and axonal atrophy. By network-based transcriptomics, we identified sulfatase 2 (Sulf2) mRNA in activated human primary OPCs. Sulf2, an extracellular endosulfatase, modulates the signaling microenvironment by editing the pattern of sulfation on heparan sulfate proteoglycans. We found that Sulf2 was increased in demyelinating lesions in multiple sclerosis and was actively secreted by human OPCs. In experimental demyelination, elevated OPC Sulf1/2 expression directly impaired progenitor recruitment and subsequent generation of oligodendrocytes thereby limiting remyelination. Sulf1/2 potentiates the inhibitory microenvironment by promoting BMP and WNT signaling in OPCs. Importantly, pharmacological sulfatase inhibition using PI-88 accelerated oligodendrocyte recruitment and remyelination by blocking OPC-expressed sulfatases. Our findings define an important inhibitory role of Sulf1/2 and highlight the potential for modulation of the heparanome in the treatment of chronic demyelinating disease.


Asunto(s)
Diferenciación Celular/genética , Microambiente Celular/genética , Enfermedades Desmielinizantes/genética , Perfilación de la Expresión Génica/métodos , Células Precursoras de Oligodendrocitos/metabolismo , Remielinización/genética , Animales , Axones/metabolismo , Células Cultivadas , Enfermedades Desmielinizantes/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Transgénicos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Células Precursoras de Oligodendrocitos/citología , Sulfatasas/genética , Sulfatasas/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
16.
Molecules ; 26(4)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33672044

RESUMEN

In spite of unique structural, spectroscopic and redox properties, the synthetic variants of the planar, antiaromatic hexaphyrin (1.0.1.0.1.0) derivatives 2, has been limited due to the low yields and difficulty in access to the starting material. A chemical modification of the meso-substituents could be good alternative overcoming the synthetic barrier. Herein, we report a regio-selective nucleophilic aromatic substitution (SNAr) of meso-pentafluorophenyl group in rosarrin 2 with catechol. The reaction afforded benzodioxane fused rosarrin 3 as single product with high yield. The intrinsic antiaromatic character of the starting rosarrin 2 retained throughout the reactions. Clean, two electron reduction was achieved by treatment of 3 with SnCl2•2H2O affording 26π-electron aromatic rosarrin 4. The synthesized compounds exhibited noticeable changes in photophysical and redox properties compared with starting rosarrin 2.


Asunto(s)
Porfirinas/química , Porfirinas/síntesis química , Técnicas Electroquímicas , Espectrofotometría Ultravioleta , Estereoisomerismo
17.
Acta Neuropathol Commun ; 9(1): 34, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648591

RESUMEN

Cognitive dysfunction occurs in greater than 50% of individuals with multiple sclerosis (MS). Hippocampal demyelination is a prominent feature of postmortem MS brains and hippocampal atrophy correlates with cognitive decline in MS patients. Cellular and molecular mechanisms responsible for neuronal dysfunction in demyelinated hippocampi are not fully understood. Here we investigate a mouse model of hippocampal demyelination where twelve weeks of treatment with the oligodendrocyte toxin, cuprizone, demyelinates over 90% of the hippocampus and causes decreased memory/learning. Long-term potentiation (LTP) of hippocampal CA1 pyramidal neurons is considered to be a major cellular readout of learning and memory in the mammalian brain. In acute slices, we establish that hippocampal demyelination abolishes LTP and excitatory post-synaptic potentials of CA1 neurons, while pre-synaptic function of Schaeffer collateral fibers is preserved. Demyelination also reduced Ca2+-mediated firing of hippocampal neurons in vivo. Using three-dimensional electron microscopy, we investigated the number, shape (mushroom, stubby, thin), and post-synaptic densities (PSDs) of dendritic spines that facilitate LTP. Hippocampal demyelination did not alter the number of dendritic spines. Surprisingly, dendritic spines appeared to be more mature in demyelinated hippocampi, with a significant increase in mushroom-shaped spines, more perforated PSDs, and more astrocyte participation in the tripartite synapse. RNA sequencing experiments identified 400 altered transcripts in demyelinated hippocampi. Gene transcripts that regulate myelination, synaptic signaling, astrocyte function, and innate immunity were altered in demyelinated hippocampi. Hippocampal remyelination rescued synaptic transmission, LTP, and the majority of gene transcript changes. We establish that CA1 neurons projecting demyelinated axons silence their dendritic spines and hibernate in a state that may protect the demyelinated axon and facilitates functional recovery following remyelination.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Enfermedades Desmielinizantes/fisiopatología , Espinas Dendríticas/ultraestructura , Hipocampo/patología , Hipocampo/fisiopatología , Esclerosis Múltiple/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Animales , Astrocitos/metabolismo , Disfunción Cognitiva/etiología , Cuprizona/administración & dosificación , Cuprizona/toxicidad , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Potenciación a Largo Plazo , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Densidad Postsináptica/metabolismo , Análisis de Secuencia de ARN
18.
J Neurosci ; 41(10): 2245-2263, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33472827

RESUMEN

The proinflammatory cytokine IFN-γ, which is chronically elevated in multiple sclerosis, induces pathologic quiescence in human oligodendrocyte progenitor cells (OPCs) via upregulation of the transcription factor PRRX1. In this study using animals of both sexes, we investigated the role of heparan sulfate proteoglycans in the modulation of IFN-γ signaling following demyelination. We found that IFN-γ profoundly impaired OPC proliferation and recruitment following adult spinal cord demyelination. IFN-γ-induced quiescence was mediated by direct signaling in OPCs as conditional genetic ablation of IFNγR1 (Ifngr1) in adult NG2+ OPCs completely abrogated these inhibitory effects. Intriguingly, OPC-specific IFN-γ signaling contributed to failed oligodendrocyte differentiation, which was associated with hyperactive Wnt/Bmp target gene expression in OPCs. We found that PI-88, a heparan sulfate mimetic, directly antagonized IFN-γ to rescue human OPC proliferation and differentiation in vitro and blocked the IFN-γ-mediated inhibitory effects on OPC recruitment in vivo Importantly, heparanase modulation by PI-88 or OGT2155 in demyelinated lesions rescued IFN-γ-mediated axonal damage and demyelination. In addition to OPC-specific effects, IFN-γ-augmented lesions were characterized by increased size, reactive astrogliosis, and proinflammatory microglial/macrophage activation along with exacerbated axonal injury and cell death. Heparanase inhibitor treatment rescued many of the negative IFN-γ-induced sequelae suggesting a profound modulation of the lesion environment. Together, these results suggest that the modulation of the heparanome represents a rational approach to mitigate the negative effects of proinflammatory signaling and rescuing pathologic quiescence in the inflamed and demyelinated human brain.SIGNIFICANCE STATEMENT The failure of remyelination in multiple sclerosis contributes to neurologic dysfunction and neurodegeneration. The activation and proliferation of oligodendrocyte progenitor cells (OPCs) is a necessary step in the recruitment phase of remyelination. Here, we show that the proinflammatory cytokine interferon-γ directly acts on OPCs to induce pathologic quiescence and thereby limit recruitment following demyelination. Heparan sulfate is a highly structured sulfated carbohydrate polymer that is present on the cell surface and regulates several aspects of the signaling microenvironment. We find that pathologic interferon-γ can be blocked by modulation of the heparanome following demyelination using either a heparan mimetic or by treatment with heparanase inhibitor. These studies establish the potential for modulation of heparanome as a regenerative approach in demyelinating disease.


Asunto(s)
Enfermedades Autoinmunes Desmielinizantes SNC/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Interferón gamma/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Enfermedades Autoinmunes Desmielinizantes SNC/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados
19.
Front Neurol ; 12: 779003, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002930

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system, where ongoing demyelination and remyelination failure are the major factors for progressive neurological disability. In this report, we employed a comprehensive proteomic approach and immunohistochemical validation to gain insight into the pathobiological mechanisms that may be associated with the progressive phase of MS. Isolated proteins from myelinated regions, demyelinated white-matter lesions (WMLs), and gray-matter lesions (GMLs) from well-characterized progressive MS brain tissues were subjected to label-free quantitative mass spectrometry. Using a system-biology approach, we detected increased expression of proteins belonging to mitochondrial electron transport complexes and oxidative phosphorylation pathway in WMLs. Intriguingly, many of these proteins and pathways had opposite expression patterns and were downregulated in GMLs of progressive MS brains. A comparison to the human MitoCarta database mapped the mitochondrial proteins to mitochondrial subunits in both WMLs and GMLs. Taken together, we provide evidence of opposite expression of mitochondrial proteins in response to demyelination of white- and gray-matter regions in progressive MS brain.

20.
Mol Psychiatry ; 26(5): 1458-1471, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32055008

RESUMEN

Germline mutations in PTEN account for ~10% of cases of autism spectrum disorder (ASD) with coincident macrocephaly. To explore the importance of nuclear PTEN in the development of ASD and macrocephaly, we previously generated a mouse model with predominantly cytoplasmic localization of Pten (Ptenm3m4/m3m4).Cytoplasmic predominant Pten localization results in a phenotype of extreme macrocephaly and autistic-like traits. Transcriptomic analysis of the Ptenm3m4/m3m4 cortex found upregulated gene pathways related to myeloid cell activation, myeloid cell migration, and phagocytosis. These transcriptomic findings were used to direct in vitro assays on Pten wild-type and Ptenm3m4/m3m4 microglia. We found increased Iba1 and C1q expression with enhanced phagocytic capacity in Ptenm3m4/m3m4 microglia, indicating microglial activation. Moreover, through a series of neuron-microglia co-culture experiments, we found Ptenm3m4/m3m4 microglia are more efficient at synaptic pruning compared with wild-type controls. In addition, we found evidence for neuron-microglia cross-talk, where Ptenm3m4/m3m4 neurons elicit enhanced pruning from innately activated microglia. Subsequent in vivo studies validated our in vitro findings. We observed a concurrent decline in the expression of Pten and synaptic markers in the Ptenm3m4/m3m4 cortex. At ~3 weeks of age, with a 50% drop in Pten expression compared with wild-type levels, we observed enhanced activation of microglia in the Ptenm3m4/m3m4 brain. Collectively, our data provide evidence that dysregulated Pten in microglia has an etiological role in microglial activation, phagocytosis, and synaptic pruning, creating avenues for future studies on the importance of PTEN in maintaining microglia homeostasis.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Fosfohidrolasa PTEN/genética , Animales , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Ratones , Microglía , Plasticidad Neuronal , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA