Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(12): e32386, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988564

RESUMEN

Multidrug-resistant yeast Candida auris is a serious threat to public health with documented survival in various hospital niches. The dynamics of this survival benefit and its trade off with drug resistance are still unknown for this pathogen. In this study we investigate the oxidative stress response (OSR) in fluconazole-resistant C. auris and compare its relative fitness with fluconazole-susceptible strains. A total of 351 C. auris clinical isolates (61 fluconazole-susceptible and 290 fluconazole-resistant) were screened for stress tolerance by spot assay and 95.08 % fluconazole-susceptible isolates were hyper-resistant to oxidative stress while majority (94.5 %) fluconazole-resistant isolates had lower oxidative tolerance. Expression of Hog1 and Cta1 gene transcript levels and cellular catalase levels were significantly higher in fluconazole-susceptible isolates and a corresponding higher intracellular reactive oxygen species level (iROS) was accumulated in the fluconazole-resistant isolates. Biofilm formation and cell viability under oxidative stress revealed higher biofilm formation and better viability in fluconazole-susceptible isolates. Fluconazole-resistant isolates had higher basal cell wall chitin. On comparison of virulence, the % cytotoxicity in A549 cell line was higher in fluconazole-susceptible isolates and the median survival of the infected larvae in G. mellonella infection model was higher in fluconazole-resistant (5; IQR:4.5-5 days) vs. fluconazole-susceptible C. auris (2; IQR:1.5-2.5 days). All organisms evolve with changes in their environmental conditions, to ensure an optimal balance between proliferation and survival. Development of tolerance to a certain kind of stress example antifungal exposure in yeast can leads to a compensatory decrease in tolerance for other stresses. This study provides useful insights into the comparative fitness and antifungal susceptibility trade off in C. auris. We report a negative association between H2O2 tolerance and fluconazole susceptibility. Using in-vitro cell cytotoxicity and in-vivo survival assays we also demonstrate the higher virulence potential of fluconazole-susceptible C. auris isolates corroborating the negative correlation between susceptibility and pathogen survival or virulence. These findings could also be translated to clinical practice by investigating the possibility of using molecules targeting stress response and fitness regulating pathways for management of this serious infection.

2.
BMC Plant Biol ; 24(1): 515, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851681

RESUMEN

BACKGROUND: Plant-parasitic root-knot nematode (Meloidogyne incognita) causes global yield loss in agri- and horticultural crops. Nematode management options rely on chemical method. However, only a handful of nematicides are commercially available. Resistance breeding efforts are not sustainable because R gene sources are limited and nematodes have developed resistance-breaking populations against the commercially available Mi-1.2 gene-expressing tomatoes. RNAi crops that manage nematode infection are yet to be commercialized because of the regulatory hurdles associated with transgenic crops. The deployment of the CRISPR/Cas9 system to improve nematode tolerance (by knocking out the susceptibility factors) in plants has emerged as a feasible alternative lately. RESULTS: In the present study, a M. incognita-responsive susceptibility (S) gene, amino acid permease (AAP6), was characterized from the model plant Arabidodpsis thaliana by generating the AtAAP6 overexpression line, followed by performing the GUS reporter assay by fusing the promoter of AtAAP6 with the ß-glucuronidase (GUS) gene. Upon challenge inoculation with M. incognita, overexpression lines supported greater nematode multiplication, and AtAAP6 expression was inducible to the early stage of nematode infection. Next, using CRISPR/Cas9, AtAAP6 was selectively knocked out without incurring any growth penalty in the host plant. The 'Cas9-free' homozygous T3 line was challenge inoculated with M. incognita, and CRISPR-edited A. thaliana plants exhibited considerably reduced susceptibility to nematode infection compared to the non-edited plants. Additionally, host defense response genes were unaltered between edited and non-edited plants, implicating the direct role of AtAAP6 towards nematode susceptibility. CONCLUSION: The present findings enrich the existing literature on CRISPR/Cas9 research in plant-nematode interactions, which is quite limited currently while compared with the other plant-pathogen interaction systems.


Asunto(s)
Arabidopsis , Sistemas CRISPR-Cas , Enfermedades de las Plantas , Tylenchoidea , Animales , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Susceptibilidad a Enfermedades , Técnicas de Inactivación de Genes , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Tylenchoidea/fisiología
3.
Heliyon ; 10(4): e26384, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420492

RESUMEN

Root-knot nematode Meloidogyne graminicola is one of the most destructive plant parasites in upland as well as direct seeded rice. As an integral part of nematode biology, host finding behavior involves perceiving and responding to different chemical cues originating from the rhizosphere. A sustainable management tactic may include retardation of nematode chemoreception that would impair them to detect and discriminate the host stimuli. Deciphering the molecular basis of nematode chemoreception is vital to identify chokepoints for chemical or genetic interventions. However, compared to the well-characterized chemoreception mechanism in model nematode Caenorhabditis elegans, plant nematode chemoreception is yet underexplored. Herein, the full-length cDNA sequences of two chemotaxis-related genes (Mg-odr-1 and Mg-odr-3) were cloned from M. graminicola. Both the genes were markedly upregulated in the early developmental stages of M. graminicola suggesting their involvement in host finding processes. RNAi-induced independent knockdown of Mg-odr-1 and Mg-odr-3 caused behavioral aberration in second-stage juveniles of M. graminicola which in turn perturbed the nematodes' host finding ability and parasitic success inside rice roots. Additionally, nematodes' chemotactic response to different host root exudates, volatile and nonvolatile compounds was affected. Our results demonstrating the role of specific chemosensory genes in modulating M. graminicola host seeking behavior can enrich the existing knowledge of plant nematode chemoreception mechanism, and these genes can be targeted for novel nematicide development or in planta RNAi screens.

4.
Plant Cell Rep ; 43(1): 3, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38117317

RESUMEN

KEY MESSAGE: Heterologous expression of a nematode-responsive promoter in tomato successfully driven the RNAi constructs to impart root-knot nematode resistance. The root-knot nematode Meloidogyne incognita seriously afflicts the global productivity of tomatoes. Nematode management options are extremely reliant on chemical methods, however, only a handful of nematicides are commercially available. Additionally, nematodes have developed resistance-breaking phenotypes against the commercially available Mi gene-expressing tomatoes. Nematode resistance in crop plants can be enhanced using the bio-safe RNAi technology, in which plants are genetically modified to express nematode gene-specific dsRNA/siRNA molecules. However, the majority of the RNAi crops conferring nematode tolerance have used constitutive promoters, which have many limitations. In the present study, using promoter-GUS fusion, we functionally validated two nematode-inducible root-specific promoters (pAt1g74770 and pAt2g18140, identified from Arabidopsis thaliana) in the Solanum lycopersicum-M. incognita pathosystem. pAt2g18140 was found to be nematode-responsive during 10-21 days post-inoculation (dpi) and became non-responsive during the late infection stage (28 dpi). In contrast, pAt1g74770 remained nematode-responsive for a longer duration (10-28 dpi). Next, a number of transgenic lines were developed that expressed RNAi constructs (independently targeting the M. incognita integrase and splicing factor genes) driven by the pAt1g74770 promoter. M. incognita parasitic success (measured by multiplication factor ratio) in pAt1g74770:integrase and pAt1g74770:splicing factor RNAi lines were significantly reduced by 60.83-74.93% and 69.34-75.31%, respectively, compared to the control. These data were comparable with the RNAi lines having CaMV35S as the promoter. Further, a long-term RNAi effect was evident, because females extracted from transgenic lines were of deformed shape with depleted transcripts of integrase and splicing factor genes. We conclude that pAt1g74770 can be an attractive alternative to drive localized expression of RNAi constructs rather than using a constitutive promoter. The pAt1g74770-driven gene silencing system can be expanded into different plant-nematode interaction models.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Tylenchoidea , Femenino , Animales , Interferencia de ARN , Solanum lycopersicum/genética , Integrasas , Factores de Empalme de ARN , ARN Bicatenario/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...